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Semiparametrically Efficient R-Estimation

for Dynamic Location-Scale Models

Marc Hallin∗ Davide La Vecchia†

Abstract

We define rank-based estimators (R-estimators) for semiparametric time series models in which

the conditional location and scale depend on a Euclidean parameter, while the innovation density is

an infinite-dimensional nuisance. Applications include linear and nonlinear models, featuring either

homo- or heteroskedasticity (e.g., AR-ARCH and discretely observed diffusions with jumps). We show

how to construct easy-to-implement R-estimators, which achieve semiparametric efficiency at some

predetermined reference density while preserving root-n consistency, irrespective of the actual density.

Numerical examples illustrate the good performances of the proposed estimators. An empirical analysis

of the log-return and log-transformed two-scale realized volatility concludes the paper.

MSC: 62G20, 62G35, 62M05, 62M10

Keywords: Conditional heteroskedasticity, Distribution-freeness, Forecasting, Lévy processes, One-step

R-estimators

1 Introduction

Stochastic processes are essential tools of analysis in many scientific fields, such as biology, eco-

nomics and finance; see, e.g., Kloeden and Platen (1994) and Cont and Tankov (2004). While

their probabilistic properties have been studied in great details via stochastic calculus (see, e.g.

Karlin and Taylor (1981), Davidson (1994)), their statistical analysis still present several chal-

lenges; see, e.g., Äıt-Sahalia (2006), Zhao (2008), Bibby et al. (2010), and references therein.

The fact that underlying conditional densities, as a rule, either are unknown or cannot be

specified in closed-form led to inference procedures relying on semiparametric methods, among

∗ECARES, Université libre de Bruxelles, Belgium and ORFE, Princeton University, Princeton, N.J., USA.
†Dept. of Econometrics and Business Statistics, Monash University, Melbourne, Australia, and School of Eco-
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which the Gaussian quasi-likelihood (henceforth, QL) procedures are the most popular. However, it

is well-known that QL estimates for the analysis of real data may be quite inefficient (Linton (1993)),

or highly unreliable (Mancini et al. (2005)), because of heavy tails and extreme observations.

To cope with this problem, other semiparametric methods can be applied, along the lines

of Drost et al. (1997), to construct root-n consistent and semiparametrically efficient estimators.

These methods achieve semiparametric efficiency. Efficiency must be understood à la Le Cam (see

Le Cam and Yang (2000)), in a local and asymptotic sense, over some class G of densities.

Typical examples are Linton (1993) and Wefelmeyer (1996), who specify the first two conditional

moments of the process under study, while the innovation density remains a nuisance parameter.

Then, local asymptotic normality (LAN) leads to the definition of a semiparametrically efficient

score or central sequence, which is obtained as the projection of the LAN central sequence along the

tangent space generated by the nuisance parameter. However, derivation of tangent space projec-

tions generally entails complicated calculation. Moreover, in order to achieve root-n consistency,

those methods require the estimation of the actual innovation density (thus very large samples are

needed) and imposes such numerically cumbersome procedure a sample-splitting.

Building on the results by Hallin and Werker (2003), we propose an alternative estimation

methodology, based on the residual ranks. Our procedure is similar in the spirit to the standard

semiparametric approach, but its implementation avoids both the derivation of tangent space pro-

jections and the estimation of the actual innovation density. Thanks to this, we can construct

semiparametrically efficient R-estimators in complex econometric models for which the construc-

tion of semiparametrically efficient estimators otherwise would be hardly possible. On the other

hand, our R-estimators represent a substantial contribution to the literature on rank-based meth-

ods, which so far has been focused mainly on statistical procedures for conditionally homoskedastic

(and quite often linear) models. For instance, our method, to the best of our knowledge, is the first

one deriving R-estimators in the context of discretely observed diffusion processes.

Other attempts have been made to introduce R-estimation in the context of time-series models:

see, among the others, Koul and Saleh (1993), Koul and Ossiander (1994), Terpstra et al. (2001),

Mukherjee and Bai (2002), Mukherjee (2007), Andrews (2008, 2012). The estimators developed

there, however, rely on an extension of the method introduced by Jaeckel (1972) for linear regres-

sion with independent observations. Contrary to the original Hodges-Lehmann definition, Jaeckel’s

R-estimators are based on somewhat hybrid objective functions which combine the residual ranks

and residuals themselves. In the time-series settings considered in this paper, Jaeckel-type objec-
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tive functions do not follow from any solid decision-theoretic argument and their equivalence to

the Hodges-Lehmann approach has to be shown. Jaeckel-type R-estimators are not measurable

(not even asymptotically) with respect to residual ranks, and their connection to invariance and

semiparametric efficiency is lost.

Our procedure, essentially, is described in three steps: (i) we specify the form of the conditional

location and scale of the stochastic process, (ii) we fix a reference density (f , say) which, however,

does not need to coincide with the actual one, and (iii) we derive the semiparametrically efficient

(at f) score by a suitable projection of the LAN central sequence associated with f onto the σ-

algebra generated by the ranks of the innovations. Semiparametric efficiency then is attained at f

while root-n consistency is preserved under densities g 6= f : R-estimators thus are resistant to the

misspecification of the innovation density and, in that sense, feature global robustness. Moreover,

considerable improvements in efficiency can be achieved over the QL method; see Hallin (1994).

Several examples illustrate the advantages of our estimation procedures. Numerical analysis

in the context of normal variance-mean mixture models (see Barndorff-Nielsen et al. (1982)) for

the return dynamics and a Monte Carlo experiment for the Value-at-Risk (VaR) forecasting in an

AR(1)-ARCH(1) model provide evidence that rank-based procedures improve on the accuracy of

estimates and forecasts obtained via traditional QL methods. Finally, an empirical analysis of the

modeling and forecasting of the log-return and log-transformed realized volatility of the USD/CHF

exchange rate confirms the increased accuracy of rank-based forecasts compared to the QL ones.

The paper is organized as follows. In Sections 2 and 3, we describe the setting and show how to

derive rank-based, hence distribution-free, versions of semiparametrically efficient central sequences.

Those rank-based central sequences constitute the main tool in the construction of our R-estimators,

and in Section 4 we explain how they can be constructed in a variety of econometric models. In

Section 5, we show how R-estimators can be implemented by applying to those rank-based central

sequences the ideas of Le Cam’s one-step estimation method and using a consistent estimator of

the cross-information matrix. In Section 6, we present some numerical illustrations. In Section 7,

we apply our method to real data. Finally, in Section 8 we conclude and mention some possible

topics for future research. Proofs and technical details are concentrated in Appendix.
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2 Model setting and main assumptions

2.1 General setting

LetY(n) := (Y−q+1, . . . , Y0, Y1, . . . , Yt, . . . , Yn) be the finite realization of some stationary real-valued

discrete-time process {Yt; t ∈ Z} satisfying

Yt = m(Yt−1, θ) + v(Yt−1, θ)εt (2.1)

with Yt−1 := (Yt−1, . . . , Yt−q). The functions y 7→ m(y, θ) and y 7→ v(y, θ), y ∈ R
q, are specified

and depend on some unknown p-dimensional real parameter θ = (θ1, . . . , θp)
′; {εt; t ∈ Z} is an

independent and identically distributed (i.i.d.) process with unspecified standardized density g,

such that εt and Yt′ are mutually independent for all t′ > t.

The interpretation of m(y, θ) and v(y, θ) depends on the way g is standardized. If g is assumed

to have mean zero and variance one, then m(y, θ) is the mean, and v(y, θ) the standard error,

of Yt conditional on Yt−1 = y; this is the traditional specification, in which g is required to have

finite moments of order two. Moment assumptions can be avoided, however, if g, for instance, is

assumed to have median zero and interquartile range one; then m(y, θ) is the median, and v(y, θ)

the interquartile range, of Yt conditional onYt−1 = y. With obvious notation, model equation (2.1)

generalizes into Yt = m(Yt−1,Xt, θ) + v(Yt−1,Xt, θ)εt in order to accommodate the presence of

exogenous covariates Xt. For the sake of notational simplicity, we do not pursue with this, but all

results below straightforwardly extend to that case.

For fixed g and θ in (2.1), we denote by Pθ,g the q-dimensional marginal of the process. Equa-

tion (2.1) yields as particular cases a number of classical models studied in the literature.

Example 1. Discrete-time AR-ARCH models. Setting

m(y, θ) =

p∑

i=1

θiyt−i and v2(y, θ) = 1 +

q∑

i=i

θiy
2
t−i

for y = (y1, . . . , ymax(p,q)) ∈ R
max(p,q) yields the AR(p)-ARCH(q) processes; traditional AR(p) and

ARCH(q) are particular cases.

Example 2. Discretely sampled continuous-time Markov processes. Assume that the dynamics of

the continuous-time Markov process Y are described by the stochastic differential equation

dYs = µ(Ys, θ)ds+ σ(Ys, θ)dWs
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with drift µ(y, θ) and diffusion coefficient σ(y, θ). Suppose we observe equispaced discrete-time

values from that process. That is, we observe (Y0, Yh, ..., Yjh, ..., Ynh), with fixed h-frequency (e.g.,

daily), for some h > 0. Maximum likelihood estimation of θ can be too rigid or even inapplicable,

since for many diffusions the likelihood is not available in closed form. To cope with this issue,

semiparametric versions of discretely sampled diffusions and Lévy processes, of the form (2.1), can

be obtained by exploiting the knowledge, in closed form, of the first two conditional moments. This

is the case, for instance, for the Ornstein-Uhlenbeck process considered in Äıt-Sahalia (2002), the

semiparametric version of which is studied in Hallin et al. (2000).

2.2 Assumptions

We propose a method for conducting inference about θ while avoiding a complete parametric spec-

ification of the data-generating mechanism described in (2.1). Throughout, we assume that the

functions m and v are specified, but not the parameter θ nor the density g; the resulting statis-

tical models thus are semiparametric ones, with Euclidean parameter of interest θ, and infinite-

dimensional nuisance g. Denoting by P
(n)
θ,g the joint distribution, under (2.1), of Y(n), consider the

semiparametric models P(n) = {P(n)
θ,g : θ ∈ Θ, g ∈ G}, n ∈ N, where Θ and G are such that the

following assumptions (Assumptions (A) and (B), but also Assumptions (C)-(D), see Section 3.1)

hold for any θ ∈ Θ and g ∈ G.
Assumption (A). The functions θ 7→ m(y, θ) and θ 7→ v(y, θ) are differentiable for all y, with

gradients ṁ(y, θ) := gradθm(y, θ) and v̇(y, θ) := gradθ v(y, θ). Moreover, denoting by Eθ,g

expectations under P
(n)
θ,g, both Eθ,g[ṁ(Yt−1, θ)] and Eθ,g[v̇(Yt−1, θ)] exist and are finite.

Assumption (B). (B1) For all x ∈ R, the density g(x) is strictly positive, with location zero and

scale one (any choice of location and scale can be adopted here).

(B2) The mapping x 7→ g(x) is absolutely continuous on finite intervals, i.e. there exists an a.e.

derivative ġ such that, for all −∞ < a < b <∞, g(a)− g(b) =
∫ b

a
ġ(x)dx.

(B3) Letting φg(x) := −ġ(x)/g(x) and ψg(x) := xφg(x) − 1, the Fisher information for location

I1(g) :=
∫
R
φ2
g(x)g(x)dx and the Fisher information for scale I2(g) :=

∫
R
ψ2
g(x)g(x)dx exist and are

finite. Cauchy-Schwarz then implies that I12(g) = I21(g) :=
∫
xφ2

g(x)g(x)dx exists and is finite.

For given g ∈ G and θ ∈ Θ, let H(n)
θ,g denote the simple hypothesis {P(n)

θ,g} and write H(n)
θ

for the

nonparametric collection {P(n)
θ,g : g ∈ G}. Denote by

Zt(θ) := (Yt −m(Yt−1, θ))/v(Yt−1, θ) (2.2)
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the residuals associated with the parameter value θ. Clearly, the hypotheses H(n)
θ

and H(n)
θ,g hold

true iff the residuals Zt(θ) are i.i.d. and iff they are i.i.d. with density g, respectively.

3 Uniform local asymptotic normality and ranks

In this section, we introduce the main methodological tools to be used in the sequel. First, we

establish the uniform local asymptotic normality (ULAN), with central sequence ∆(n)(θ, g), of the

parametric fixed-g submodels P(n)
g := {P(n)

θ,g : θ ∈ Θ}. Then, following Hallin and Werker (2003),

we project ∆(n)(θ, g) onto the σ-algebra generated by the ranks of the residuals Zt(θ).

3.1 Uniform local asymptotic normality (ULAN)

Defining

∆(n)(θ, g) := n−1/2

n∑

t=1

l̇(Zt,Zt−1, θ, g) and Γ(θ, g) := Eθ,g

[
l̇(Zt,Zt−1, θ, g)l̇

′
(Zt,Zt−1, θ, g)

]
,

(3.1)

where

l̇(Zt,Zt−1, θ, g) :=
v̇(Yt−1, θ)

v(Yt−1, θ)
ψg(Zt(θ))−

ṁ(Yt−1, θ)

v(Yt−1, θ)
φg(Zt(θ)), (3.2)

we make the additional assumption

Assumption (C). For all θ ∈ Θ and g ∈ G, (i) the matrix Γ(θ, g) exists, is finite and has full

rank, and (ii) the mapping θ 7→ Γ(θ, g) is continuous.

The following ULAN property then follows.

Proposition 3. (ULAN) Let Assumptions (A)-(C) hold. For all g ∈ G, the parametric model P(n)
g

is ULAN with central sequence ∆(n)(θ, g) and information matrix Γ(θ, g). More precisely, we have,

for all g ∈ G, all θ ∈ Θ, all θ(n) such that θ(n) − θ = O(n−1/2), and all bounded sequence τ n ∈ R
p,

Λn := log
dP

(n)

θ
(n)+n−1/2τ (n),g

dP
(n)

θ
(n),g

= τ ′
n∆

(n)(θ(n), g)− 1

2
τ ′
nΓ(θ, g)τn + oP(1), (3.3)

and ∆(n)(θ(n), g)
L−→ N (0;Γ(θ, g)), under P

(n)

θ
(n),g

as n→ ∞.
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3.2 Semiparametrically efficient central sequences

In the classical semiparametric approach, the semiparametrically efficient central sequence is the

tool that one needs to conduct inference and reach semiparametric efficiency bounds. That semi-

parametrically efficient central sequence, denoted as ∆∗(n)(θ, g), is obtained by projecting the

central sequence ∆(n)(θ, g) along the tangent space; see the monograph by Bickel et al. (1993) for

the i.i.d. framework, or Hallin and Werker (2003) for time series models.

Typically, the actual computation of semiparametrically efficient central sequences for models

of the form (2.1) is a painful case-by-case task. Moreover, once ∆∗(n)(θ, f) has been obtained for

all f ∈ G, the actual density g still has to be estimated by some adequate ĝ(n), to be plugged

into ∆∗(n)(θ, f), yielding ∆∗(n)(θ, ĝ(n)). Indeed, the asymptotic distribution of ∆∗(n)(θ, f) un-

der P
(n)
θ,g is unknown whenever f 6= g, and, typically Eθ,g[∆

∗(n)(θ, f)] 6= 0. As a consequence, the

estimators based on ∆∗(n)(θ, f) reach the semiparametric efficiency bounds under P
(n)
θ,f , but are

no longer root-n consistent under P
(n)
θ,g for f 6= g. Finally, additional technical complications like

sample-splitting are required in order for ∆∗(n)(θ, ĝ(n)) to be asymptotically equivalent, under P
(n)
θ,g,

to ∆∗(n)(θ, g).

It has been shown in Hallin and Werker (2003) that, for a very broad class of models (including

most time series models), the invariance properties of residual ranks offer an attractive alternative

way to achieve semiparametric efficiency at f . More precisely, projecting ∆(n)(θ, f) onto the σ-field

generated by the ranks of the residuals Z1(θ), . . . , Zn(θ) yields a rank-based, hence distribution-free,

version ∆
˜

(n)(θ, f), say, of the semiparametrically efficient central sequence ∆∗(n)(θ, f). Namely,

under P
(n)
θ,f ,

∆
˜

(n)(θ, f)−∆∗(n)(θ, f) = oP(1), (3.4)

so that estimators (tests) based on ∆
˜

(n)(θ, f) reach the semiparametric efficiency bounds un-

der P
(n)
θ,f . However, the distribution-freeness of ranks ensures that those estimators remain root-n

consistent (keep their nominal asymptotic size) under any P
(n)
θ,g. Thus, they remain valid under the

unknown actual density g, the estimation of which is not required.

3.2.1 Theoretical derivation of the rank-based central sequence

Let us provide some details on the rank-based approach just described. Let f be some reference

density. Denote by R(n)(θ) the vector (R
(n)
1 (θ), . . . , R

(n)
n (θ)) of residual ranks, where R

(n)
t (θ) is

the rank of Z
(n)
t (θ) among Z

(n)
1 (θ), . . . , Z

(n)
n (θ). For notational convenience, we write R(n), R

(n)
t
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and Z
(n)
t , or R(θ), Rt(θ) and Zt(θ), dropping the dependence on θ and n when no confusion is

possible.

To perform the rank-based construction, we first rewrite the central sequence ∆(n)(θ, f) as a

function of the present and past residuals Zt(θ) only. To this end, let Zt−1 := (Zt−1, . . . , Z1, ε0, ε−1, . . .).

The structure of the dynamic location and scale model (2.1) implies that, for any fixed θ, Yt is a

measurable function of Zt, with Zt−1-measurable conditional location and scale. This yields, with

a slight abuse of notation,

l̇(Zt,Zt−1, θ, f) =
v̇(Zt−1, θ)

v(Zt−1, θ)
ψf(Zt(θ))−

ṁ(Zt−1, θ)

v(Zt−1, θ)
φf(Zt(θ)). (3.5)

It may happen that (3.5) only requires a finite number sn of lagged residuals Zt−i but, quite

often, an infinity of them are involved; this is the case, for instance, in AR models. Considering

the approximation l̇
sn
(Zt,Z

sn
t−1, θ, f) of l̇(Zt,Zt, θ, f) obtained by replacing, in (3.5), Zt−1 with

the truncation Zsn
t−1 := (Zt−1, . . . , Zt−min(t−1,sn), 0, 0, . . .), we make the following assumption (for

all θ ∈ Θ and g ∈ G):
Assumption (D). There exists a sequence sn of integers such that n > sn ↑ ∞ as n→ ∞, and

n−1/2

n∑

t=1

(
l̇
sn
(Zt,Z

sn
t−1, θ, g)− l̇(Zt,Zt−1, θ, g)

)
= oqm(1) as n→ ∞, under P

(n)
θ,g, (3.6)

where oqm(1) stands for a sequence that tends to zero in quadratic mean. Assumption (D) is

satisfied by many stationary Markov processes of order q and by q-dependent processes; examples

are provided in Section 4.

Assumption (D) implies that substituting the truncated scores l̇
sn
(Zt,Z

sn
t−1, θ, f) for the exact

ones l̇(Zt,Zt, θ, f) in the definition of∆(n)(θ, f) still yields a central sequence (central sequences are

only defined up to oP(1)’s), which, for simplicity, we still denote as ∆(n)(θ, f). Note that (3.6) im-

plies that the variance (under P
(n)
θ,f) of l̇

sn
(Zt,Z

sn
t−1, θ, f) is O(1), hence, in view of the independence

between Zt and Zsn
t−1, that the expectation (under P

(n)
θ,f) of l̇

sn
(Zt,Z

sn
t−1, θ, f) remains zero.

Finally, in order to define a rank-based version of ∆∗(n)(θ, f), we further make the following

very mild assumption on the truncated score function l̇
sn

associated with the reference density f .

Assumption (E). The mapping (Zt,Z
sn
t−1) 7→ l̇

sn
(Zt,Z

sn
t−1, θ, f) is componentwise monotone in all

its arguments, or a linear combinations of such componentwise monotone functions.
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Denoting by B(n)(θ) the sigma-field generated by R(n)(θ), define

∆
˜

(n)(θ, f) := Eθ,f

[
∆(n)(θ, f)

∣∣B(n)(θ)
]
=

n∑

t=1

Eθ,f

[
l̇
sn
(Zt,Z

sn
t−1, θ, f)

∣∣B(n)(θ)
]
. (3.7)

Being R(n)(θ)-measurable, ∆
˜

(n)(θ, f) is distribution-free: let Γ
˜
(n)(θ, f) be its covariance matrix

under H(n)
θ

(since that matrix only depends on θ). The following result then follows, with minor

changes, from Proposition 3.1, Corollary 3.2, and Proposition 3.3 in Hallin and Werker (2003);

details are left to the reader.

Proposition 4. Let Assumptions (A)-(E) be satisfied. Denote by ∆∗(n)(θ, f) a semiparametrically

efficient central sequence for P(n)
f , and by Γ∗(n)(θ, f) its covariance matrix under P

(n)
θ,f . Then,

∆
˜

(n)(θ, f)−∆∗(n)(θ, f) = oP(1) under P
(n)
θ,f , and lim

n→∞
Γ
˜
(n)(θ, f) = lim

n→∞
Γ∗(n)(θ, f) =: Γ∗(θ, f),

where Γ∗(θ, f) is the semiparametric information matrix.

The asymptotic equivalence, under P
(n)
θ,f , of∆

∗(n)(θ, f) and∆
˜

(n)(θ, f) implies that the latter can

be considered a rank-based version of the same semiparametrically efficient (at f) central sequence.

3.2.2 Computation of the rank-based central sequence

The rank-based score in (3.7) is obtained as the projection of l̇
sn
(Zt,Z

sn
t−1, θ, f) onto B(n)(θ). Defin-

ing Rsn
t := (R

(n)
t , . . . , R

(n)
t−s), let (recall that the score function is square-integrable)

af (R
sn
t ; θ) := Eθ,f

[
l̇
sn
(Zt,Z

sn
t−1, θ, f)|R(n)

t , . . . , R
(n)
t−s

]
(3.8)

(the exact scores). Those exact scores in general do not admit a closed form. However, they can

be replaced by the so-called approximate scores

a
(n)
f (Rsn

t ; θ) := l̇
sn

(
F−1

(
R

(n)
t

n + 1

)
, . . . , F−1

(
R

(n)
t−s

n+ 1

)
, θ, f

)
, (3.9)

where F is the distribution function associated with f ; see Hallin and Werker (2003) and reference

therein. An intuitive and heuristic justification of Eq. (3.9) is that, when Z1, . . . , Zn are i.i.d., with

nonvanishing density f , hence strictly monotone distribution function F , then R
(n)
t /(n+1) ≈ F (Zt),
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so that Zt ≈ F−1(R
(n)
t /(n + 1)), where F (Z1), . . . , F (Zn) are i.i.d., uniform over [0, 1]. With

approximate scores, the rank-based central sequence takes the form

∆
˜

(n)(θ, f) =
1√
n− s

n∑

t=s+1

a
(n)
f (Rs

t ; θ)−m
(n)
f (3.10)

with the re-centering m
(n)
f :=

√
n− sE

[∑n
t=s+1 a

(n)
f (Rs

t ; θ)
]
. By standard U -statistics results (see,

e.g., Chapter 12 of van der Vaart (1998)),

m
(n)
f =

√
n− s

n(n− 1) · · · (n− s)

∑
· · ·
∑

1≤i1 6=···6=is≤n

a
(n)
f

(
i1

n + 1
, ...,

is
n + 1

; θ

)
+ oP (1), (3.11)

so that m
(n)
f indeed qualifies as a centering.

In the sequel, for the sake of simplicity, we call ∆
˜

(n)(θ, f) a rank-based central sequence instead

of a rank-based semiparametrically efficient central sequence. Unlike its traditional counterpart,

the rank-based central sequence does not require (i) the nontrivial exercise of deriving the tangent

spaces and corresponding projections, (ii) being computed at an estimator ĝ(n) of the actual density.

4 Examples

4.1 Discrete-time models

4.1.1 Conditional heteroskedasticity models

(a) ARCH(q) Consider the class of models with dynamics of the form

Yt =
(
1 +

q∑

j=1

θjY
2
t−1

)1/2
ǫt, (4.1)

where the ǫt’s are i.i.d. with standardized (with mean zero and variance one) density g, θj > 0

for j = 1, ..., p, and
∑q

j=1 θj ≤ ρ for some ρ < 1. This model is ULAN, with central sequence

∆(n)(θ, g) =
1√
n

n∑

t=1

ψg (Zt(θ))

1 +
∑q

j=1 θjY
2
t−j




Y 2
t−1
...

Y 2
t−q


 , (4.2)
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where θ := (θ1, . . . , θq) and Zt(θ) := Yt/
(
1+
∑q

j=1 θjY
2
t−1

)1/2
. The definition of a rank-based central

sequence requires, for every t, (Yt−1, . . . , Yt−q) in (4.2) to be expressed in terms of a finite number

of past shocks. In Appendix A.4.1, we show that this is possible via a Volterra series expansion.

We here provide an alternative heuristic argument. For t = 1 let Z
(n)
1 (θ) = Y1, that is, assume

(arbitrarily, but this has no impact asymptotically) the unobserved initial values Y−q, ..., Y0 to be

equal to zero. This provides the n-tuple Z
(n)
1 (θ), ..., Z

(n)
n (θ), with ranks R

(n)
1 (θ), ..., R

(n)
n (θ). Since,

by definition, Y1 = Z
(n)
1 (θ), we set Y

˜ 1 := G−1(R
(n)
1 (θ)/(n+ 1)), and start the recurrence

Y
˜ t :=

(
1 +

q∑

j=1

θjY˜
2
t−j

)1/2
G−1

(
R

(n)
t (θ)

n+ 1

)
, t ≥ 2. (4.3)

This procedure yields (for reference density f) a central sequence which depends on a finite number

of past shocks, and we define

∆
˜

(n)(θ, f) =
1√
n

n∑

t=1

ψf

(
F−1

(
R

(n)
t (θ)

n+1

))
−m

(n)
(2),f

1 +
∑q

j=1 θjY˜
2
t−j




Y˜
2
t−1

...

Y˜
2
t−q


 (4.4)

where (see example 4.4 of Hallin and Werker (2003))

m
(n)
f,(2) :=

1

n

n∑

i=1

ψf

(
F−1

( i

n + 1

))
. (4.5)

From the re-centering Lemma in Appendix, it follows that m
(n)
f,(2) is o

(
n−1/2

)
. The asymptotic

covariance Γ∗(θ, f) of ∆
˜

(n)(θ, f) under H(n)
θ

(which is also the semiparametric information matrix

under H(n)
θ,f) is of the form I2(f)Υ

−1(θ), where the q×q-matrixΥ−1(θ) is the Gaussian information

matrix given in Theorem 2.1 of Kristensen and Rahbek (2005).

(b) AR(p)-LARCH(q) Consider the discrete-time bilinear process with dynamics

Yt =

p∑

j=1

ϑjYt−j +

(
1 +

q∑

l=1

βlYt−j

)
ǫt, (4.6)

where the ǫt’s are i.i.d. with standardized density g, and θ = (ϑ1, ..., ϑq, β1, ..., βq). If the conditions

of Theorem 2.1 in Francq and Zaköıan (2010) are satisfied (see Appendix A.4.2), the ULAN central
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sequence for θ reads

∆(n)(θ, g) =
1√
n

n∑

t=1

(
1 +

q∑

l=1

βlYt−l

)−1




φg (Zt(θ))




Yt−1

...

Yt−p




ψg (Zt(θ))




Yt−1

...

Yt−q







. (4.7)

A rank-based central sequence for reference density f is obtained by replacing, in (4.7), the resid-

ual Zt by F
−1(R

(n)
t /(n + 1)), for every t. We illustrate the construction in the AR(1)-LARCH(1)

case, with

Yt = ϑYt−1 + (1 + βYt−1)ǫt, (4.8)

which is ULAN with central sequence

∆(n)(θ, g) =
1√
n

n∑

t=1

(
φg (Zt)

ψg (Zt)

)
Yt−1

1 + βYt−1

where Zt = Zt(θ) := (Yt − ϑYt−1)/(1 + βYt−1). In A.4.2, we show how to derive the rank-based

central sequence in two steps: (i) an application of the Volterra series expansion provides a version of

the central sequence which depends on a finite number of past shocks, in which (ii) the replacement

of the shocks by their ranks yields ∆
˜

(n)(θ, f). We here provide an alternative heuristic argument

similar to the one we gave for the ARCH(q) case. For t = 1, arbitrarily put Z
(n)
1 (θ) = Y1. This

provides the n-tuple Z
(n)
1 (θ), ..., Z

(n)
n (θ), whose ranks are R

(n)
1 (θ), ..., R

(n)
n (θ). Since Y1 = Z

(n)
1 (θ),

define Y
˜ 1 := F−1(R

(n)
1 (θ)/n+ 1), and start the recurrence

Y
˜ t := ϑY

˜ t−1 + (1 + βY
˜

2
t−1)F

−1

(
R

(n)
t (θ)

n + 1

)
, t ≥ 2. (4.9)

Finally, the rank-based central sequence (for reference density f) is

∆
˜

(n)(θ, f) =
1√
n

n∑

t=1


 φf

(
F−1

(
R

(n)
t (θ)

n+1

))
−m

(n)
f,(1)

ψf

(
F−1

(
R

(n)
t (θ)

n+1

))
−m

(n)
f,(2)


 Y

˜ t−1

1 + βY
˜ t−1

,

12



where m
(n)
f,(2) is as in (4.5) and

m
(n)
f,(1) =

1

n

n∑

i=1

φf

(
F−1

(
i

n + 1

))
. (4.10)

From the re-centering Lemma in Appendix, it follows that both m
(n)
f,(1) and m

(n)
f,(2) are o

(
n−1/2

)
.

The asymptotic covariance Γ∗(θ, f) of ∆
˜

(n)(θ, f) under H(n)
θ

, which is also the semiparametric

information matrix under H(n)
θ,f , is of the block-diagonal form

(
I1(f)Ip1×p1 0

0 I2(f)Ip2×p2

)
Υ−1(θ) (4.11)

where Υ−1(θ) is the Gaussian information matrix obtained as in Chebana and Läıb (2010).

(c) AR(p)-ARCH(q) Consider the process with dynamics

Yt =

p∑

j=1

ϑjYt−j +

(
1 +

q∑

l=1

βlY
2
t−j

)1/2

ǫt, (4.12)

where the ǫt’s are i.i.d. with standardized density g, θ = (ϑ1, ..., ϑq, β1, ..., βq), and the parameters

satisfy the assumptions for stationarity in Pantula (1988). Because of the combination of AR with

ARCH process, the ULAN central sequence for ϑ features a location and a scale component:

∆(n)(θ, g) =
1√
n

n∑

t=1




φg (Zt(θ))
(
1 +

q∑

l=1

βlY
2
t−l

)1/2




Yt−1

...

Yt−p




′

ψg (Zt(θ))

1 +

q∑

l=1

βlY
2
t−l




Y 2
t−1

...

Y 2
t−q




′ 


′

.(4.13)

Using the results in Hansen (1991), one can show that there exists an asymptotically equivalent

version of (4.13) which only depends on a finite number of past shocks. Then, the definition of a

rank-based central sequence (associated with reference density f) is obtained using the approximate

scores. However, one can derive heuristically a rank-based central sequence by: (i) using a recur-

rence similar to (4.3) and (4.9), starting from Y0 = 0; (ii) replacing Zt in (4.13) by F−1(R
(n)
t /(n+1)).

The resulting rank-based statistic must be re-centered by means of m
(n)
f,(1) and m

(n)
f,(2). Closed-form

expression of m
(n)
f,(1) when f is the Gaussian, the Logistic, and the Laplace density follow from
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the values provided by Hallin and Mélard (1988), while m
(n)
f,(2) is easily computed as in (4.5). The

re-centering Lemma in Appendix shows that both m
(n)
f,(1) and m

(n)
f,(2) are o

(
n−1/2

)
. The asymptotic

covariance Γ∗(θ, f) of ∆
˜

(n)(θ, f) under H(n)
θ

(which coincides with the semiparametric information

matrix under H(n)
θ,f) is of the form (4.11), with Υ−1(θ) derived as in Theorem 3.1 of Pantula (1988).

4.2 Discretely observed continuous-time models

(d) Discretely observed Lévy processes with known conditional moments of order 1

and 2 Lévy processes are flexible and popular models, which are able to capture many features

of financial time series such as fat tails and jumps. Inference on this class of processes seldom can

be conducted using classical likelihood methods, and alternative approaches need to be explored.

Jump diffusion. Consider the Poisson-Gaussian process Y solution to

dYs = −κYsds+ dWs + dZs, (4.14)

where dWs is the standard Brownian motion and dZs = Jsdπ(s), with π a Poisson process with

intensity 1, and i.i.d. N (α, η2) jump sizes Js. The exact first and second conditional moments of Y
are available in closed form, yielding

E(Yth|Y(t−1)h) =
αh

κ
(1− exp(−κh)) + Y(t−1)h exp(−κh) (4.15)

and

Var(Yth|Y(t−1)h) =
1 + η2

2κ
(1− exp(−2κh)) . (4.16)

That class of models has been considered by Das (2002) in the dynamic analysis of bond

markets, with special focus on the series of Fed funds rates; he points out that the bond market

often overreacts, i.e., exhibits large moves in the interest rate followed by speedy reversals. The

parameter κ measures the the speed of mean reversion and it plays the main role. Das’ estimation

of κ is essentially based on a dynamic location and scale model, as obtained by a first-order (Euler)

discretization of the stochastic differential equation (4.14) — Das’ method ignores the discretization

bias; see example (e) for two possible solutions to this problem.

We are proposing here a semiparametric rank-based alternative to Das’ method. Assume that

the discrete-time process {Yth; t ∈ Z} is observed over n+1 periods, yielding (Y0, Yh, Y2h, . . . , Ynh).
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We base our analysis on the autoregressive model

Yth =
αh

κ
(1− exp(−κh)) + Y(t−1)h exp(−κh) +

[
1 + η2

2κ
(1− exp(−2κh))

]1/2
ǫth, (4.17)

where the innovation density g remains unspecified. That AR(1) model matches the first- and

second-order moments (4.15) and (4.16) of the original model (4.14); see Hallin et al. (2000) for a

related discussion in the case of Ornstein-Uhlenbeck process. For fixed g, model (4.17) is ULAN

with respect to θ := (κ, α, η), with central sequence (see (3.2))

∆(n)(θ, g) =
1√
n

n∑

t=1




ψg(Zt)β1(θ) + φg(Zt)κ
2Y(t−1)hβ2(θ)− φg(Zt)β2(θ)β3(θ)

φg(Zt)β4(θ)

ψg(Zt)β5(θ)


 (4.18)

where

Zt = Zt(θ) =
Yth − αh

κ
(1− exp(−κh))− exp(−κh)Y(t−1)h
[
1+η2

2κ
(1− exp(−2κh))

]1/2 , (4.19)

with
β1(θ) = 1

2

[
h(Coth(hκ)− 1)− η2

κ(2κ+η2)

]
,

β2(θ) = α(1− exp(hκ) + hκ),

β3(θ) = κ
−3/2h exp(−hκ/2)

[
(2κ + η2) Sinh(hκ)

]−1/2
,

β4(θ) = h (1− exp(−hκ))1/2/κ
(
1 + η2

2κ

)1/2
,

and β5(θ) = η/
(
2κ+η2

)
; Coth(x) and Sinh(x) as usual stand for the hyperbolic cotangent and hy-

perbolic sinus of x, respectively. Canceling ∆(n)(θ, g) yields M-estimators for θ—among them, the

Gaussian QL estimator. Due to the highly non-linear form of the estimating equations, however, nu-

merical implementation is likely to be problematic, and so is the derivation of fully semiparametric

estimators in the style of Bickel et al. (1993).

The R-estimation methods developed here thus naturally enter into the picture. Projection

of ∆(n)(θ, f) (where f is some chosen reference density) onto the space of the ranks cancels the

second and third components; as for the first one, the terms with hyperbolic functions disappear,

and only φg(Zt)κ
2Y(t−1)hβ2(θ) has a nondegenerate projection. This means that neither α nor η are

identifiable unless the actual density g of ǫth in (4.17) can be correctly specified—which is impossible,

due to the approximate nature of the model. Going back to (4.17), this is intuitively clear, as α and η
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only appear in the innovation’s unconditional location and scale, while the ranks are invariant to

location and scale perturbations. For (standardized) reference density f , the projection onto the σ-

algebra of residual ranks of the component of the central sequence associated with κ thus coincides

(up to a multiplicative constant that will play no role) with that of n−1/2
∑n

t=1 φf(Zt)Y(t−1)h.

More formally, let R
(n)
t (θ) denote the rank of Zt(θ) in (4.19). That rank is the same as the

rank R
(n)
t (κ) of Z†

t (κ) := Yth − exp(−κh)Y(t−1)h. Then, along the same lines as in example 4.3 of

Hallin and Werker (2003) a (univariate) rank-based central sequence emerges, of the form (up to a

multiplicative constant and oP(1) terms)

∆
˜

(n)(κ, f) := n1/2

sn∑

i=0

exp(−iκh)(n − i)−1

n∑

t=i+1

(
φf

(
F−1

(R(n)
t (κ)

n + 1

))
F−1

( R(n)
t−i

n+ 1

)
−m

(n)
f

)

where m
(n)
f := [n(n − 1)]−1

∑
1≤i1 6=i2≤n φf(F

−1(i1/n+ 1))F−1(i2/n + 1), with, under H(n)
θ

, asymp-

totic variance Γ∗(θ, f) = I1(f)/
(
1− exp(−2κh)

)
; semiparametric efficiency arguments refer to the

approximate model (4.17).

Building on a relatively simple AR(1) technology, the projection onto the space of the ranks

defines (see Section 5 for details) root-n consistent R-estimators for κ in the rather sophisticated

context of a discretized jump diffusion process, where the jump parameters are treated as nuisance

—hence, to some extent, the R-estimators are robust to jumps misspecification.

Discretely observed Cox-Ingersoll-Ross (CIR) processes The CIR process is the solution to

dYs = k(1− Ys)dt+ σ
√
YsdWs, (4.20)

where 2k > σ2, with conditional mean and variance (see, e.g., Bibby et al. (2010))

E
(
Yth|Y(t−1)h

)
= (1− exp(−kh)) + Y(t−1)h exp(−kh),

Var
(
Yth|Y(t−1)h

)
= Y(t−1)h

σ2

k
(exp(−kh)− exp(−2kh)) +

σ2

2k
(1− exp(−kh))2 .

Assume that the discrete-time process {Yth; t ∈ Z} is observed. The exact transition density of the

process is known in closed form, but the derivation of the maximum likelihood estimator (MLE)
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for θ := (k, σ2) is numerically cumbersome. As a result, most empirical studies rely on the model

Yth = (1− exp(−kh)) + Y(t−1)h exp(−kh) (4.21)

+

[
Y(t−1)h

σ2

k
(exp(−kh)− exp(−2kh)) +

σ2

2k
(1− exp(−kh))2

]1/2
ǫth,

with i.i.d. standard normal ǫth’s. The resulting QL estimator typically exhibits quite large standard

errors, but improvements can be expected from using R-estimators in the context of the semipara-

metric model (2.1). To this end, notice that the discrete-time model in (4.21) is an AR(1)-ARCH(1)

model; this brings us back, thus, to example (c).

(e) Discretely observed diffusions with unknown conditional moments Consider the

general diffusion model Y solution to

dYs = µ(Ys; θ)dt+ σ(Ys; θ)dWs, (4.22)

with parameter θ ∈ R
p, and assume that the drift and diffusion coefficient satisfy the standard

conditions for the existence of a solution (see, e.g., Karlin and Taylor (1981)). Even though the

conditional moments of Y are not known in closed form, approximate models can be constructed

for the discretized process {Yth} of the form (Y0, Yh, Y2h, . . . , Ynh). We briefly sketch here two ways

of obtaining such approximate models.

(i) One can derive accurate analytical approximations to the conditional mean m(y, θ) and

conditional variance v2(y, θ) using the infinitesimal generator Lθ := µ(y, θ)d/dy+0.5σ2(y, θ)d2/dy2

of the process. For a smooth function ϕ of class Cς+1 (typically, a polynomial), indeed, we have

Eθ

(
ϕ (Yth)

∣∣Y(t−1)h

)
=

ς∑

i=0

hi

i!
Li

θ
ϕ(Y(t−1)h) +O

(
hς+1

)
, t = 1, . . . , n ς ∈ N; (4.23)

see Bibby et al. (2010). The formula in (4.23) yields approximations of m(y, θ) and v2(y, θ) set-

ting ϕ(y) = y and ϕ(y) = y2, respectively. Those approximate conditional moments then can be

matched, in the spirit of examples (e) and (f), by simple (conditional) location-scale models. We

refer to Bibby et al. (2010) for details, and for numerical evidence that (4.23) in practice provides

surprisingly precise approximations for daily (h = 1/250) and weekly (h = 1/52) data; moreover,

for any given h, arbitrarily accurate approximations can be obtained using further powers of Lθ.
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(ii) One also can define a first-order Euler discretization of (4.22), namely,

Yth = Y(t−1)h + µ(Y(t−1)h; θ)h + σ(Y(t−1)h; θ)ǫth (4.24)

and use it as an auxiliary model in the context of indirect inference, see Gourieroux et al. (1993).

Both strategies lead to a semiparametric model for the discrete-time observation of the diffu-

sion Y which, under fixed density g and suitable conditions, can be shown to be ULAN with central

sequence ∆(n)(θ, g), say. Then, the projection argument of the central sequence onto the σ-algebra

generated by the ranks of the residuals leads to the definition of a rank-based central sequence.

As an illustration, consider the class of diffusion equations (see Morozan (1986))

dYs = λ(1− Ys)ds+ (1 + σYs)dWs (4.25)

where dWs is standard Brownian motion, and set θ := (λ, σ).Assume that (Y0, Yh, Y2h, ..., Yjh, ..., Ynh)

are observed. Under strategy (i), we approximate the first two conditional moments of Y by (4.23):

E(Yth|Y(t−1)h) = Y(t−1)h + hλ(1− Y(t−1)h) +O(h2) and Var(Yth|Y(t−1)h) = h(1 + σY(t−1)h)
2 +O(h2).

Those approximate conditional moments are matched by the discrete-time AR(1)-LARCH(1) semi-

parametric model

Yth = hλ+ (1− hλ)Y(t−1)h +
√
h(1 + σY(t−1)h)ǫth, (4.26)

where the ǫth’s are i.i.d. with unspecified standardized density g.

Turning to strategy (ii), in can be seen that the first step of the indirect inference proce-

dure yields a first-order (Euler) discretization of (4.25) which, in this particular model, coincides

with (4.26); the two strategies thus lead to the same approximate semiparametric model.

Once this approximate model (4.26) is obtained, the literature typically proposes a pseudo-

Gaussian approach, and derives the QL estimator of θ. The QL approach here is only one among

many possible inferential methods, though, and Gaussian densities usually constitute a poor fit to

the error distributions in (4.26). Following Hallin et al. (2000), we abandon the Gaussian specifi-

cation of g. For g ∈ G, the ULAN central sequence for (4.26) reads

18



∆(n)(θ, g) =
1√
n

n∑

t=1

(
φg(Zth)h(1− Y(t−1)h)

ψg(Zth)
√
hY(t−1)h

)
1

1 + σY(t−1)h

, (4.27)

with Zth = (Yth − (1 − hλ)Y(t−1)h)/
√
h(1 + σY(t−1)h). A rank-based central sequence is obtained

along the same lines as in example (b).

The resulting R-estimator of λ and σ2 achieve root-n consistency and semiparametric efficiency

at the reference density in the approximate model (4.26), not in the original one (4.25), where they

are likely to be biased. For “small” values of h (e.g., daily or weekly data), the bias is “small”,

and in many practical applications, one could simply ignore it. However, a careful treatment of

that bias is worth a theoretical investigation. In particular, we conjecture that the bias, in both

strategies, depends on h and can be controlled by well-known arguments. In strategy (i), assuming

that n→ ∞ and h→ 0 in such a way that nh̺ → 0 for some ̺ ∈ N (which depends on ς in (4.23))

should yield a root-n consistent estimator for the parameters in (4.25); see Bibby et al. (2010) for a

discussion. In strategy (ii), we suppose that one is able to correct the bias by standard simulation

procedures as in the indirect inference method; see Gourieroux et al. (1993) for a discussion.

5 R-estimation

We now explain how the rank-based central sequences ∆
˜

(n)(θ, f) obtained in the previous section

can be used in the construction of R-estimators. As a test statistic, the quadratic form

Q
˜

HL(θ0, f) := ∆
˜

(n)′(θ0, f)Γ
∗−1(θ0, f)∆˜

(n)(θ0, f)

provides an optimal rank test for the hypothesis θ = θ0. Therefore, it would be natural to define

(for reference density f) the R-estimator of θ as the minimizer, with respect to θ, of the rank-based

quadratic form Q
˜

HL(θ, f) := ∆
˜

(n)′(θ, f)Γ∗−1(θ, f)∆
˜

(n)(θ, f). Despite its simplicity and intuitive

appeal, this definition, which in a much simpler context goes back to Hodges and Lehmann, runs into

serious difficulties. The non-convex form of Q
˜

HL(θ, f) indeed results in practical implementation

problems (e.g., multiple solutions and local minima).

Those difficulties have been solved, in the context of linear models with independent observa-

tions, by Jaeckel (1972) who observed that the minimizer of Q
˜

HL(θ, f) is asymptotically the same

as that of another quadratic form, Q
˜

J(θ, f), which involves residual ranks but also the residuals

themselves. Jaeckel’s method, unfortunately, does not extend readily to the present context, since
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its statistical justification does not hold anymore. Instead, we consider here a one-step version of

the minimization of Q
˜

HL(θ, f), inspired from Le Cam’s one-step estimation method.

5.1 One-step R-estimators

Let θ̂
(n)

and Γ̂
(n)

f denote an arbitrary root-n consistent (under P
(n)
θ,f) estimator of θ and a consistent

estimator of Γ∗(θ, f), respectively. Assume moreover that θ̂
(n)

is asymptotically discrete, that is,

only takes a finite number of values in balls of radius cn−1/2 (c > 0) centered at θ. Our one-step R-

estimation method is based on the following result, the proof of which readily follows from standard

results (see, e..g, Chapter 6 of Le Cam and Yang (2000)) and (since part (iii) of Assumption (F),

under g = f , follows from ULAN) can be considered a particular case of Proposition 6.

Proposition 5. Let Assumptions (A)-(E) hold. The one-step R-estimator

θ
˜
(n)

f
:= θ̂

(n)
+ n−1/2

(
Γ̂

(n)

f

)−1
∆
˜

(n)(θ̂
(n)
, f) (5.1)

under P
(n)
θ,f is root-n consistent and asymptotically normal, with

n1/2(θ
˜
(n)

f
− θ)

D−→ N
(
0,Γ∗−1(θ, f)

)
.

Since (Proposition 4) the rank-based central sequence ∆
˜

(n)(θ, f) is a version of the semipara-

metrically efficient central sequence at (θ, f), with asymptotic covariance the semiparametric infor-

mation matrix Γ∗(θ, f), the R-estimator θ
˜
(n) in (5.1) is semiparametrically efficient under density f .

Next, in the general case where the reference density f does not necessarily match the actual

one g, consider the following assumption.

Assumption (F). Under P
(n)
θ,g, (i) θ̂

(n)
is a root-n consistent and asymptotically discrete estimator

of θ,

(ii) Γ̂
(n)

f is a consistent estimator of the cross-information matrix

Γ(θ, f, g) := lim
n→∞

Eθ,g

[
∆
˜

(n)(θ, f)
(
∆
˜

(n)(θ, g)
)′]

, (5.2)

(in section 5.2, we explain how to construct such estimators), and

(iii) g is such that (asymptotic linearity) ∆
˜

(n)(θ+n−1/2τ , f)−∆
˜

(n)(θ, f) = −Γ(θ, f, g)τ + oP(1),

(note that, for f = g, Γ(θ, f, f) = Γ∗(θ, f)).

We then have, for the one-step R-estimator (5.1), the following result (see the Appendix for

a proof):
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Proposition 6. Let Assumptions (A)-(F) hold. Then, under P
(n)
θ,g,

n1/2
(
θ
˜
(n)

f
− θ

) D−→ N
(
0,Γ−1(θ, f, g)Γ∗(θ, f)Γ−1(θ, f, g)

)
.

Proposition 6 implies that θ
˜
(n)

f
remains root-n consistent for any (f, g) ∈ G such that part (iii)

of Assumption (F) holds; contrary to many M- and L-estimators, thus, our R-estimators are robust

to model misspecification.

5.2 Cross-information quantities

5.2.1 Estimation

An important issue in the implementation of our R-estimation methodology is related to the need,

in part (ii) of Assumption (F), for a consistent estimator of the cross-information matrix Γ(θ, f, g)

in (5.2). Constructing such an estimator is typically a complicated task, since Γ(θ, f, g) involves the

expectation, under the actual density g, which is unknown, of quantities that themselves depend

on g and f . Estimation procedures have been proposed in Cassart et al. (2010). A fully general

method is developed in Hallin and Paindaveine (2014).

Very often, though, the matrix Γ(θ, f, g) has a special structure that can be exploited in order

to simplify that estimation. For instance, some models (e.g., the AR or ARCH ones) yield the

factorization Γ(θ, f, g) = J (f, g)Υ−1(θ), where J (f, g) is a scalar quantity depending on f and g

only, while Υ−1(θ) only depends on θ. In some others, Γ(θ, f, g) is block-diagonal, with  blocks,

each of which is enjoying a similar factorization. This is the case for most models considered here.

A precise formulation of that simplifying assumption is as follows.

Assumption (G). For all θ ∈ Θ and f, g ∈ G, the cross-information matrix Γ(θ, f, g)

(G1) is block-diagonal, with  full-rank blocks of the form J1(f, g)Υ
−1
1 (θ), . . . ,J(f, g)Υ

−1
 (θ) where

the scalar cross-information quantities Jj(f, g) only depend on f and g, while the matrices

Υj(θ) only depend on θ, j = 1, . . . , ;

(G2) is such that the mapping θ 7→ Γ(θ, f, g) is continuous on Θ.

When Assumption (G) holds, the procedure developed in Cassart et al. (2010), applies; the same

procedure was also used by Hallin et al. (2013) in the context of linear models for independent

observations with symmetric α-stable innovation density.

In our location-scale models, Assumption (G), when it holds, takes the even simpler form
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Γ(θ, f, g) =

(
I1(f, g)Ip1×p1 0

0 I2(f, g)Ip2×p2

)
Υ−1(θ) (5.3)

with  = 2, Ip1×p1 and Ip1×p1 unit matrices of adequate dimension p1 and p2, and Υ−1(θ) is the

asymptotic covariance matrix of the Gaussian quasi-likelihood estimator. In particular, Assump-

tion (G) holds with Γ(θ, f, g) of the form (5.3) as soon as G is restricted to symmetric (with respect

to 0) densities – see Section 5.2.2 for details – an assumption which is quite common in the liter-

ature, see, e.g., Gourieroux et al. (1984), Linton (1993), and Hallin et al. (2013). In that setting,

if consistent estimators Î1(f, g) and Î2(f, g) for the scalars I1(f, g) and I2(f, g) are available, the

one-step R-estimator θ
˜
(n)

f
is defined as

θ
˜
(n)

f
:= θ̂

(n)
+ n−1/2Υ(θ)

(
Î−1
1 (f, g)Ip1×p1 0

0 Î−1
2 (f, g)Ip2×p2

)
∆
˜

(n)(θ̂
(n)
, f). (5.4)

Cassart et al. (2010) propose the following consistent estimators. For any (λ1, λ2) ∈ R
2, let

θ̃
(n)

(λ1, λ2) := θ̂
(n)

+ n−1/2Υ(θ)

(
λ1Ip1×p1 0

0 λ2Ip2×p2

)
∆
˜

(n)(θ̂
(n)
, f);

the desired estimators of I1(f, g) and I2(f, g) then are (Î1(f, g), Î2(f, g)) :=
(
(λ

(n)
∗1 )

−1, (λ
(n)
∗2 )

−1
)
,

where

(λ
(n)
∗1 , λ

(n)
∗2 ) := inf

(λ1,λ2)∈R+×R+

{
λ1, λ2|∆˜

(n)(θ̂
(n)

)′Υ(θ̂
(n)

)Υ(θ̃
(n)

(λ1, λ2))∆˜
(n)(θ̃

(n)
(λ1, λ2)) < 0

}
. (5.5)

5.2.2 Examples

Let us show that, under suitable assumptions on innovation densities, Assumption (G) holds for

all models considered in Section 4. To illustrate this point, let us define

I1(f, g) :=

∫ 1

0

φf

(
G−1(u)

)
φg

(
F−1(u)

)
du, I2(f, g) :=

∫ 1

0

ψf

(
G−1(u)

)
ψg

(
F−1(u)

)
du,

I12(f, g) :=

∫ 1

0

φf

(
G−1(u)

)
ψg

(
F−1(u)

)
du, and I21(f, g) :=

∫ 1

0

ψf

(
G−1(u)

)
φg

(
F−1(u)

)
du.

Those four (cross-)information quantities enter the definition of Γ(θ, f, g). Assumption (G1) clearly

holds when I12(f, g) and I21(f, g) (which appear in the off-diagonal blocks, if any, of Γ(θ, f, g)) both
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vanish --a condition which is clearly satisfied when f and g both are symmetric. Here are a few

examples from Section 4.1.

ARCH(q). The central sequence in Eq. (4.2) implies that the information matrix satisfies As-

sumption (G1) with  = 1, scalar cross-information quantity J (f, g) = I2(f, g) and the q × q

matrix Υ−1(θ) given in Kristensen and Rahbek (2005) (page 951). Symmetry of the innovation

density here is not required; that matrix is continuous in θ, so that (G2) also holds.

AR(p)-LARCH(q). If g is symmetric, Assumption (G1) holds with two blocks ( = 2), Jj(f, g) =

Ij(f, g), j = 1, 2, and Υ(θ) the asymptotic variance matrix of the Gaussian quasi-likelihood esti-

mator derived in Corollary 1 of Chebana and Läıb (2010). In case g is not symmetric, the general

method of Hallin and Paindaveine (2014) applies, though; (G2) clearly holds.

AR(p)-ARCH(q). Assuming again that g is symmetric, Assumption (G1) similarly holds, now with

the asymptotic variance derived as in Theorem 3.1 of Pantula (1988), which also satisfies (G2). In

case g is not symmetric, the general method of Hallin and Paindaveine (2014) applies.

6 Numerical examples and simulation study

6.1 Return and realized volatility

In this section, we study the asymptotic and finite-sample performance of several R-estimators in

the model

rt = ςtǫt with log ςt = θ1 log ςt−1 + θ2 log ςt−2 + θ3 log ςt−3 + vt, (6.1)

where ςt is a random variable taking values in R
+, {ǫt} is independent standard normal white noise,

the vt’s are i.i.d. with standardized density g, and ǫt is independent of vs for all (s, t).

This model is related to the normal variance mean mixture models (Barndorff-Nielsen et al.

(1982)), which are applied in modeling and forecasting the realized volatility of assets; see, e.g.,

Corsi (2009), Corsi et al. (2013), and references therein.

We study the efficiencies of the QL and R-estimators based on the van der Waerden, Wilcoxon,

and Laplace scores. Centering and scaling constants m
(n)
f and s

(n)
f are provided explicitly in

Hallin and Mélard (1988); see also Lemma in Appendix. Thus, we consider

(a) a Gaussian reference density f , yielding a rank-based central sequence ∆
˜

(n)

vdW
which is a linear
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combination of the van der Waerden correlation coefficients

r
˜
(n)
vdW;i =

(
s
(n)
vdW

)−1 {
(n− i)−1

(n)∑

t=i+1

Φ−1

(
R

(n)
t

n+ 1

)
Φ−1

(
R

(n)
t−i

n+ 1

)
−m

(n)
vdW

}
, (6.2)

where Φ as usual stands for the standard normal distribution function;

(b) a logistic reference density f , yielding a rank-based central sequence ∆
˜

(n)

W
which is a linear

combination of the Wilcoxon correlation coefficients

r
˜
(n)
W ;i =

(
s
(n)
W

)−1 {
(n− i)−1

(n)∑

t=i+1

(
R

(n)
t

n+ 1
− 1

2

)
log

(
R

(n)
t−u

n+ 1− R
(n)
t−i

)
−m

(n)
W

}
; (6.3)

(c) a double-exponential reference density f , yielding a rank-based central sequence ∆
˜

(n)
L

which

is a linear combination of the Laplace correlation coefficients (I[·] stands for the indicator

function)

r
˜
(n)
L;i =

(
S
(n)
L

)−1 {
(n− i)−1

(n)∑

t=i+1

sign

(
R

(n)
t

n + 1
− 1

2

)[
log

(
2
R

(n)
t−u

n+ 1

)
I

[
R

(n)
t−u

n+ 1
≤ 1

2

]]
(6.4)

−
[
log

(
2− 2

R
(n)
t−u

n+ 1

)
I

[
R

(n)
t−u

n+ 1
>

1

2

]]
−m

(n)
L

}
.

Under (6.1), Assumption (G) is satisfied with  = 1, without any symmetry assumption on g.

Asymptotic performance (AREs). The performance of traditional methods as QL estimation is

typically sensitive to skewness and kurtosis. In order to study the impact of skewness and leptokur-

tosis on R- and QL estimators, we are considering here densities g in the four-parameter family of

Johnson’s densities with unbounded support; see Jones and Pewsey (2009) and Ghysels and Wang

(2011). In the sequel, we refer to the general density in this class by JSU(γ, δ, µ, σ), where γ and δ

are skewness and kurtosis parameters, respectively, while µ and σ, as usual, stand for location and

scale. In Figure 1 we plot the excess of kurtosis and the skewness corresponding to various choices

for γ and δ. Remark that δ ≤ 1 and γ ≥ 3 yield high kurtosis excess and quite negative skewness.

The asymptotic relative efficiency (ARE) under g of the R-estimator associated with reference

density f with respect to the QL estimator is easily obtained as I21 (f, g)/I1(g), with I1(f, g) defined

in (5.6), and I1(g) := I1(g, g). Results are provided in Table 1. They indicate that, under leptokurtic

innovation density g (e.g., δ = 0.85 or 1), all R-estimators considered here quite significantly
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Figure 1: Johnson’s densities JSU(γ, δ, 0, 1). Left panel: excess of kurtosis (y-axis) for different
values of δ (x-axis) and γ = 0 (continuous line), γ = 3 (dotted line), γ = 10 (dashed line). Right
panel: skewness (y-axis) for different values of γ (x-axis) and δ = 0.85 (continuous line), δ = 1
(dotted line), δ = 1.5 (dashed line).

outperform their QL competitors, whether g is asymmetric or not. Skewness alone, however, has

a somewhat limited impact on AREs. Under skewed and leptokurtic g’s (e.g., γ = 4, δ = 1), the

relative performance of R-estimators is particularly impressive: an ARE value of 12.341 is reached

under (γ, δ) = (4, 1).

6.2 Return and time-varying volatility

The next Monte Carlo simulation illustrates how semiparametrically efficient estimates improve on

the efficiency of out-of-sample Value-at-Risk (VaR) prediction based on QL estimates.

Let Y := {Yt}t∈Z be a strictly stationary stochastic process, modeling the daily rate of return

of a financial asset with price Pt at time t; that is Yt = logPt − logPt−1. We set for Y the

AR(1)-ARCH(1) model
Yt = ϑYt−1 +

(
1 + βY 2

t−1

)1/2
ǫt, (6.5)

where the ǫt’s are i.i.d., with location zero, scale one, and featuring a double-exponential density.

In principle, one should compute the MLE of θ = (ϑ, β). However, implementation of the

MLE requires a reparameterization and is numerically quite heavy, see Peng and Yao (2003). As a

consequence, the QL estimation represents an easy-to-implement alternative estimation procedure;

see, e.g., Mancini et al. (2005). The QL simplicity, however, comes at the price of efficiency loss,

while the R-estimator based on Laplace scores is a natural candidate in the context.

The aim of the next Monte Carlo exercise is twofold. We illustrate that the Laplace R-estimator:
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JSU(γ, δ, µ, σ)

Leptokurtic Skewed Leptokurtic and Skewed

ARE γ = 0, δ = 0.85 γ = 0, δ = 1 γ = 3, δ = 10 γ = 10, δ = 10 γ = 3, δ = 1.5 γ = 4, δ = 1

vdW/QL 2.567 1.755 1.002 1.014 2.657 12.341

W/QL 3.245 2.124 0.960 0.968 2.207 7.319

L/QL 3.433 2.033 0.643 0.644 1.234 2.972

Table 1: AREs, under various values of γ and δ, of R-estimators (van der Waerden, Wilcoxon,
Laplace) with respect to the QL estimator. The underlying process in an AR(3), with JSU(γ, δ, µ, σ)
innovation density.

(i) is an easy-to-implement alternative to MLE; (ii) improves on the QL efficiency —by construc-

tion, it achieves semiparametric efficiency at the double exponential density. Our Monte Carlo

exercise is conducted as follows: (Step 1) we generate from (6.5) a trajectory of n = 100, 500, 750

observations, using ϑ = 0.05, and β = 0.5; (Step 2) from each of those trajectories, we compute

the QL estimator and the Laplace one-step R-estimator; the latter is based on the projection of

the central sequence (4.13) onto the space of residual ranks, with the score φL(x) =
√
2(x − 1/2)

and the QL as preliminary estimator; (Step 3) from the resulting estimated conditional means

and variances, we compute the out-of-sample one-step-ahead predicted conditional (to Y ∗
t ) VaR at

confidence level α; that VaR is such that α = Pθ,g

(
Yt+1 ≤ VaRα

t,t+1‖Y ∗
t

)
, for α = 5%; (Step 4) we

repeat steps (1)-(3) 5000 times for each sample size —we use the same Y ∗
t in all replications.

We display the results in Table 2. Both the QL and the Laplace R-estimator exhibit median

predicted VaRs which essentially coincide with the actual VaR, and only entail small bias for all

sample sizes. However, the rank-based VaR predictions for the R-estimator display smaller MSEs

(about one half) than the QL-based ones. The gain is due to the fact that the R-estimator achieves

higher efficiency than the QL estimator. Since we use QL estimates as preliminary estimates,

the one-step R-estimation procedure represents an efficiency tuning, which nevertheless comes with

very valuable benefits in terms of robustness, since the R-estimator θ
˜
(n) is such that n1/2(θ

˜
(n)−θ) is

asymptotically equivalent to a rank-based random variable, hence asymptotically measurable with

respect to the σ-algebra generated by the ranks. Such combinations of efficiency and robustness
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are rare, and worth being mentioned.

n = 100 n = 500 n = 750

L/QL L/QL L/QL

MSE 56.27% 57.63% 60.53%

|Bias| 73.65% 72.82% 72.90%

Table 2: One-day-ahead conditional VaR estimates at 5% level for different sample sizes: ratios,
with respect to the QL, of the MSE and the absolute value of the bias (|Bias|) associated with
Laplace (L) R-estimator. The MC size is 5000 and Y ∗

t = 0.0072 (from the limiting distribution).

7 Empirical analysis: USD/CHF exchange rate

One of the major problems in the analysis of financial time series is the relatively frequent occurrence

of extreme values —a phenomenon rank-based methods, including R-estimation, are less sensitive to

than traditional parametric and semiparametric methods. We illustrate this point with an empirical

analysis of the series of USD/CHF exchange rate daily log-returns and its realized volatility, as

measured by the Two Scales Realized Volatility (TSRV) series, see Äıt-Sahalia et al. (2005). Our

analysis builds on the empirical findings of Andersen et al. (2000, 2003).

7.1 Data

Our dataset consists of tick-by-tick log mid prices over 24 hours of USD/CHF FX rates provided

by Olsen&Associates; log mid prices are computed as averages of the logarithmic bid and ask

quotes, obtained from the Reuters FXFX screen. In order to avoid modeling the seasonal behavior

of trading activity induced by week-ends, we exclude all trades taking place from Friday 21:00

GMT to Sunday 22:00 GMT. From the high-frequency quotes, we compute (as in Corsi (2009))

TSRVs by summing the high-frequency squared log-returns with slow scale of ten ticks, and daily

log-returns as rt = logPt − logPt−1, where Pt is the daily USD/CHF exchange rate provided by

Reuters. We conduct our analysis on the 1993 and 1997 data. In each year, we use the first 200

observations (from January to end September) as training data for model estimation and diagnosis

(see Sections 7.2.1 and 7.2.2 below), and the last 50 ones (from October to December) to evaluate

forecasting performances. In Figure 2 we plot the log-return and TSRV trajectories.
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Figure 2: USD/CHF FX rate return: log-return (top panels) and annualized TSRV (bottom panels)
series for the years 1993 and 1997.

7.2 Modeling and forecasting

7.2.1 Exploratory analysis and modeling

Log-return. As in Andersen et al. (2000), we consider the dynamics of the process of log-returns rt

standardized by the TSRV, namely rt/TSRVt. The resulting series has approximately mean zero,

variance close to one, and a sample partial correlation analysis with robust standard errors (unre-

ported) does not detect any predictability. The Shapiro-Wilks test for rt/TSRVt are 0.896 and 0.208

for the 1997 and 1993 data, respectively. Thus, we conclude that the a standard normal approxi-

mation for the rt/TSRVt is supported by the data.

Two Scales Realized Volatilities (TSRV and log(TSRV)). Turning to volatilities, we consider

the TSRV process and its log-transformation. Table 3 displays some summary statistics for their

unconditional distribution. The years 1993 and 1997 illustrate different aspects of the data: (i) the

1993 training period (January-September) exhibits 9 extreme values; we label it as “standard”, and

believe it expresses the typical dynamics of the TSRV; (ii) in 1997, the training period (January-

September) shows 7 extreme values, while the Asian crisis is causing 4 extreme values between

October and December (the TSRV strikes 0.3). We label this period as “non-standard”, since it

contains several unfrequent negative volatility shocks related to a well-identified financial crisis.

The log-transformation of the TSRV slightly reduces the number of extreme observations; however,

similar considerations still hold. We model the series of logged TSRVs by (2.1), assuming an AR
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specification for the conditional mean and ǫt ∼ g(0, 1). The autocorrelation analysis (unreported)

of the training data suggests that an AR process with no more than three lags is a suitable model.

Thus, we set that the conditional mean of the log(TSRV) is of the form
∑3

j=1 θj log(TSRVt−j).

1993 1997

TSRV

Jan-Sept Oct-Dec Jan-Sept Oct-Dec

Mean 0.112 0.088 0.094 0.096
SD 0.022 0.018 0.021 0.033
Kurtosis 3.532 2.770 5.662 20.296
q.75 − q.25 0.028 0.024 0.027 0.026
obs ≤ q.50 − 3×MAD 3 0 0 0
obs ≥ q.50 + 3×MAD 7 0 7 4

log(TSRV)

Jan-Sept Oct-Dec Jan-Sept Oct-Dec

Mean -2.206 -2.451 -2.388 -2.375
SD 0.192 0.208 0.217 0.256
Kurtosis 3.421 3.212 3.634 7.982
q.75 − q.25 0.256 0.278 0.298 0.288
obs ≤ q.50 − 3.5×MAD 4 1 2 0
obs ≥ q.50 + 3.5×MAD 3 0 3 2

Table 3: USD/CHF FX rates: descriptive statistics (empirical means, standard errors, kurtoses
and interquartile ranges; numbers of extreme values) for the TSRV (top panel) and log(TSRV)
(bottom panel) series, 1993 and 1997. We define as “extreme” any observation lying outside the
region defined by the median plus or minus c1 times the median absolute deviation (MAD) over
the period considered; we set c1 = 3 for the TSRV and c1 = 3.5 for the log(TSRV).

7.2.2 Estimation and diagnostics

Building on the previous considerations, we set up a normal mean-variance mixture model, of the

form (6.1), with TSRVt playing the role of ςt. We estimate the model parameters from the data in

each training period, and assess the quality of the various estimates—QL, and the van der Warden

(vdW), Wilcoxon (W), and Laplace (L) R-estimators—via their standard errors; the latter are

obtained by estimating the cross-information quantities in the variance matrix as in Section 5.2.

Results are displayed in Table 4.

In the 1993 training data, all estimation methods considered suggest an AR(1) model for the
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1993 1997

QL vdW W L QL vdW W L

θ1 0.2762 0.3204 0.3525 0.4014 0.3719 0.3517 0.3677 0.3921
(0.072) (0.051) (0.070) (0.045) (0.071) (0.063) (0.080) (0.077)

θ2 0.0969 0.0988 0.0768 0.0190 0.1323 0.1586 0.1408 0.1761
(0.074) (0.061) (0.075) (0.048) (0.076) (0.066) (0.085) (0.081)

θ3 -0.0371 -0.0396 -0.0316 0.0008 0.0911 0.0669 0.0606 0.033
(0.073) (0.051) (0.070) (0.045) (0.071) (0.063) (0.080) (0.077)

Table 4: USD/CHF: inference on log(TSRV). QL and R-estimates (and standard errors).

log(TSRVt) series, while in 1997 the same estimation methods agree on an AR(2) model. Table 4

indicates that the standard errors of R-estimators in general are smaller than those of QL estimators.

To assess the validity of the fitted models, we consider some standard diagnostics. In Figure 3,

we plot the sample partial autocorrelation of the standardized and squared-standardized residuals,

as implied by the Laplace R-estimator for the training period January-September 1993. None of the

plots provide any evidence of autocorrelation outside Bartlett’s two-standard-error bands for white

noise. Similar plots (unreported) are available for the QL estimator and the other R-estimators.
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Figure 3: USD/CHF: diagnostics for Laplace R-estimator in 1993 data. Sample partial autocorre-
lation of residuals (left) and of squared-residuals (right).
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7.2.3 Forecasting

We computed, for each day in the October-December period (still 1993 and 1997), the squared

one-day-ahead prediction error for each estimator obtained from the corresponding training period.

Table 5 provides some classical (mean and standard deviation) and robust (median and mean

absolute deviation) evaluations of the squared bias and dispersion of the prediction errors. R-

estimators (particularly the Laplace ones) appear to provide more accurate forecasts than the QL

estimators, but the improvements, in terms of location and dispersion, are smaller in the “crisis

year” 1997 than in 1993. This is probably due to the extreme values related to the Asian crisis.

Such large values, which are not representative of the actual dynamics, badly affect prediction

errors —less so, however, when using rank-based methods than with the traditional QL ones.

1993 1997

QL vdW/QL W/QL L/QL QL vdW/QL W/QL L/QL

Mean 0.24 96% 94% 91% 0.17 100% 99% 99%

Median 0.13 97% 99% 88% 0.05 94% 97% 84%

SD 0.38 98% 97% 96% 0.56 100% 100% 98%

MAD 0.11 103% 108% 99% 0.04 96% 98% 90%

Table 5: USD/CHF: mean, median, standard deviation, and mean absolute deviation for the
squared one-day-ahead prediction errors based on QL estimator and ratios, with respect to the
latter, of the corresponding quantities for R-estimators.

8 Discussion

The class of econometric models that can be handled by our methodology is large. Moreover,

our ideas could be extended to indirect inference, e.g., using the models in Section 4 as auxiliary

models, and our R-estimation can be applied to construct indirect inference estimators. To this

end, note that the choice of the reference density considered in the construction of the rank-based

central sequence can be made data-driven, in order to (i) capture some features (such as skewness,

kurtosis) of the actual density, and (ii) get closer to semiparametric efficiency at the actual density.

Finally, R-estimation of the mean reversion parameter described in Section 4.2 (e) could be applied

to derive robust statistical arbitrages.
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A TECHNICAL APPENDIX

A.1 Proof of Proposition 3

Proposition 3 follows from Theorem 2.1 in Drost et al. (1997): we just need to check that their Assumptions A-E1

are satisfied. Specifically,

(a) their Assumption A follows from our Assumption (E);

(b) their Assumption B is a consequence of the location-scale form of (2.1);

(c) setting, for θ̃(n) − θ(n) = O(n−1/2),

W ′
nt(θ̃

(n) − θ(n)) =
1

v(Yt−1, θ
(n))

(
m(Yt−1, θ̃

(n))−m(Yt−1, θ
(n)), v(Yt−1, θ̃

(n))− v(Yt−1, θ
(n))
)′

we have, as n→ ∞, Wnt →Wt in the sense of (2.4) in Drost et al., where

Wt =Wt(θ) :=
1

v(Yt−1,ϑ)

∂

∂ϑ′

(m(Yt−1,ϑ), v(Yt−1,ϑ))
∣∣∣
ϑ=θ

=
1

v(Yt−1, θ)
(ṁ(Yt−1, θ), v̇(Yt−1, θ))

is Ft−1-measurable (see section 4.1 in Drost et al. (1997)); Assumptions C and D thus are satisfied;

(d) l̇(Zt,Zt−1, θ, g) =Wt(θ)(−φg(Zt(θ)), ψq(Zt(θ)))
′, as defined in Eq. (3.2), satisfies Assumption E.

Theorem 2.1 in Drost et al. (1997) thus applies, which concludes the proof. �

A.2 Proof of Proposition 6

From the definition of θ
˜
(n)

f
, the asymptotic linearity of ∆

˜
(n), the consistency of Γ̂

(n)

f , and the asymptotic discreteness

of θ̂
(n)

(all following from Assumption (F)), we have, under P
(n)
θ,g,

n1/2
(
θ
˜
(n)

f
− θ

)
= n1/2

(
θ̂
(n)

+ n−1/2
(
Γ̂
(n)

f

)−1
∆
˜

(n)(θ + n−1/2n1/2(θ̂
(n) − θ), f)− θ

)

= n1/2
(
θ̂
(n)

+ n−1/2Γ−1(θ, f, g)
(
∆
˜

(n)(θ, f)− Γ(θ, f, g)n1/2
(
θ̂
(n) − θ

))
− θ

)
+ oP(1)

= Γ−1(θ, f, g)∆
˜

(n)(θ, f) + oP(1).

The result then readily follows from the asymptotic normality of ∆
˜

(n)(θ, f). �

A.3 A re-centering Lemma

We start with a general result on square-integrable of monotone functions.

1In this proof, labels A, B, . . . refer to the assumptions in Drost et al., labels (A), (B), . . . to ours.
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Lemma 7. Let h be a square-integrable monotone non-decreasing function from (0, 1) to R. Then,

1

n

n∑

i=1

h
( i

n+ 1

)
−
∫ 1

0

h(u) du = o
(
n−1/2

)
as n→ ∞.

Proof. Without loss of generality, we may assume that
∫ 1

0
h(u) du = 0. Since h is monotone non-decreasing and

square-integrable,
1

n+ 1
h2
( n

n+ 1

)
≤
∫ 1

n/(n+1)

h2(u) du = o(1).

Therefore, h2
(

n
n+1

)
= o(n), h

(
n

n+1

)
= o(n1/2), and 1

nh
(

n
n+1

)
= o

(
n−1/2

)
. Similarly, 1

nh
(

1
n+1

)
= o

(
n−1/2

)
, and

hence

max
1≤i≤n

1

n

∣∣h
( i

n+ 1

)∣∣ = o
(
n−1/2

)
. (A.1)

Let u0, u
− and u+ be such that h(u0 − 0) ≤ 0, h(u0 + 0) ≥ 0, and

∫ u−

0 h(u) du = −
∫ 1

u+ h(u) du, so that
∫ u+

u−
h(u) du = 0. Definining i− := ⌈(n + 1)u−⌉, i0 = ⌊(n + 1)u0⌋, and i+ := ⌊(n + 1)u+⌋, decompose the sum

Sn := 1
n

∑n
i=1 h

(
i

n+1

)
into

Sn = S−−
n + S−

n + S+
n + S++

n

:=
1

n

i−−1∑

i=1

h
( i

n+ 1

)
+

1

n

i0∑

i=i−

h
( i

n+ 1

)
+

1

n

i+∑

i=i0+1

h
( i

n+ 1

)
+

1

n

n∑

i=i++1

h
( i

n+ 1

)
.

Clearly,

0 ≤ − n

n+ 1
S−−
n ≤ −

∫ u−

0

h(u) du and 0 ≤ n

n+ 1
S++
n ≤

∫ 1

u+

h(u) du, (A.2)

as the corresponding rectangular areas 1
n+1

∣∣h
(

i
n+1

)∣∣ lie between the axis and the curve u 7→ h(u). Also,

− n

n+ 1
S−
n =





D−
n +

(
u− − i− − 1

n+ 1

)∣∣∣h
( i−

n+ 1

)∣∣∣

D̄−
n +

( i0 + 1

n+ 1
− u0

)∣∣∣h
( i0
n+ 1

)∣∣∣−
( i−

n+ 1
− u−

)∣∣∣h
(
u−
)∣∣∣

(A.3)

and

n

n+ 1
S+
n =





D+
n +

( i+ + 1

n+ 1
− u+

)
h
( i+

n+ 1

)

D̄+
n +

(
u0 −

i0
n+ 1

)
h
( i0 + 1

n+ 1

)
−
(
u+ − i+

n+ 1

)
h
(
u+
) (A.4)

where D−
n , D̄

−
n , D

+
n and D̄+

n are lower and upper Darboux sums, for
∫ u0

u−
|h(u)| du and

∫ u+

u0
h(u) du, respectively.

Those Darboux sums are such that

D+
n − D̄−

n ≤
∫ u+

u−

h(u) du = 0 ≤ D̄+
n −D−

n
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It follows from (A.3), (A.4) and (A.2) that

D+
n − D̄−

n +

∫ u−

0
h(u) du+ o

(
n−1/2

)
(A.5)

= D+
n − D̄−

n +
( i+ + 1

n+ 1
− u+

)
h
( i+

n+ 1

)
+
( i0 + 1

n+ 1
− u0

)
h
( i0
n+ 1

)
−
( i−

n+ 1
− u−

)
h
(
u−
)
+

∫ u−

0
h(u) du

≤ n

n+ 1
Sn

≤ D̄+
n −D−

n +
(
u0 −

i0
n+ 1

)
h
( i0 + 1

n+ 1

)
−
(
u+ − i+

n+ 1

)
h
(
u+
)
+
(
u− − i− − 1

n+ 1

)
h
( i−

n+ 1

)
+

∫ 1

u+

h(u) du

= D̄+
n −D−

n +

∫ 1

u+

h(u) du+ o
(
n−1/2

)
(A.6)

Now,

D̄+
n −D+

n =
(
u0 −

i0
n+ 1

)
h
( i0 + 1

n+ 1

)
+
( i+ + 1

n+ 1
− u+

)
h
( i+

n+ 1

)
+
(
u+ − i+

n+ 1

)
h
(
u+
)
= o
(
n−1/2

)
,

and

D̄−
n −D−

n = −
( i−

n+ 1
− u−

)
h
(
u−
)
−
(
u− − i− − 1

n+ 1

)
h
( i−

n+ 1

)
+
( i0 + 1

n+ 1
− u0

)
h
( i0
n+ 1

)
= o
(
n−1/2

)

It follows that the lower and upper bounds in (A.5) and (A.6) reduce to
∫ u−

0 h(u) du+ o
(
n−1/2

)
and

∫ 1

u+ h(u) du+

o
(
n−1/2

)
, respectively, and their diffference to

2

∫ 1

u+

h(u) du+ o
(
n−1/2

)
,

where the o
(
n−1/2

)
quantity is uniform in u+. The desired result that Sn is o

(
n−1/2

)
follows by considering a

sequence u+n converging to 1 in such a way that
∫ 1

u+
n

h(u) du = o
(
n−1/2

)
.

Under Assumption (E), the score functions associated with the reference density f are assumed to be the

difference between to monotone increasing square-integrable functions to which Lemma 7 applies.

A.4 Analytical derivation of some rank-based central sequences

A.4.1 ARCH(q)

Consider the class of ARCH(q) models, with dynamics of the form

Yt =
(
1 +

q∑

j=1

θjY
2
t−j

)1/2
ǫt, (A.7)

where the ǫt’s are i.i.d. with density g, mean zero and variance one, θ = (θ1, ..., θq) where θj > 0 for j = 1, .., q and

such that
∑q

j=1 θj ≤ ρ < 1. Set Zt(θ) = Yt/
(
1 +

∑q
j=1 θjY

2
t−1

)1/2
. From Eq. (3.2), the ULAN central sequence

for θ is
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∆(n)(θ, g) =
1√
n

n∑

t=1

ψg(Zt(θ))

1 +
∑q

j=1 θjY
2
t−j




Y 2
t−1

...

Y 2
t−q



. (A.8)

Expanding Y 2
t into a Volterra series, we obtain Y 2

t = ǫ2t +
∑

k≥1 wt(k), where

wt(k) :=
∑

j1,...,jk≥1

k∏

r=1

θjr

k∏

r′=0

ǫ2
t−

∑
r′

h=0 jh
(A.9)

(with j0 = 0) converges in probablity (this follows from stationarity of Yt, see, e.g., Giraitis et al. (2000a) and

reference therein) is positive for all k. The condition
∑q

j=1 θj ≤ ρ < 1 implies that there exists a sequence sn such

that Y 2
t can be asymptotically reconstructed using only a finite number sn of past shocks. Indeed,

Y 2
t = Ỹ 2

t +
∑

k≥sn

wt(k), with Ỹ 2
t := ǫ2t +

sn∑

k=1

wt(k). (A.10)

In what follows, for the sake of notational simplicity, we set s = sn. Since E(ε2t ) = 1, we have Eθ

∑∞

k>s wt(k) < Cρs

for some C > 0. For any δ > 0, the Markov inequality implies that

Pθ

(
∞∑

k>s

wt(k) > δ

)
≤ Cρsδ−1, hence

∑

s≥1

Pθ

(
∞∑

k>s

wt(k) > δ

)
<∞

and, in view of the first Borel-Cantelli Lemma, Pθ

(∑∞
k>s wt(k) > δ, i.o.

)
= 0. As a result,

∑∞
k>s wt(k) converges to

zero almost surely, hence in probability, as s→ ∞.

Combining (A.10) and (A.8), we get

∆(n)(θ, g) =
1√
n

n∑

t=1

ψg (Zt)

1 +
∑q

j=1 θj

(
Z2
t−j +

∑
k≥1 wt−j(k)

)




Z2
t−1 +

∑
k≥1 wt−1(k)

...

Z2
t−q +

∑
k≥1 wt−q(k)




(A.11)

where, with a slight abuse of notation, wt−j(k) is as in (A.9), with ǫj replaced by Zt−j , for all j = 1, ..., q. Defining

et−j(s) :=
Y 2
t−j

1 +
∑q

j=1 θjY
2
t−j

−
Z2
t−j +

∑s
k=1 wt−j(k)

1 +
∑q

j=1 θj
(
Z2
t−j +

∑s
k=1 wt−j(k)

) ,

we have et−j(s) ≤ Y 2
t−j − Y

2(s)
t−j ≤ ∑

k≥s wt−j(k), which is oP(1). Thus, we approximate (A.8) by another central

sequence depending on a finite number s of lags only, which we also denote as ∆(n)(θ, g). In view of Section 3.2.2
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and (A.11), the corresponding rank-based central sequence takes the form

∆
˜

(n)(θ, g) =
1√
n

n∑

t=1

(
ψg

(
G−1

(
R

(n)
t

n+ 1

))
−m

(n)
g,(2)

)




(
G−1

(R(n)
t−1

n+ 1

))2
+

s∑

k=1

w˜t−1

(
k
)

1 +

q∑

j=1

θj

((
G−1

( R(n)
t−j

n+ 1

))2
+

s∑

k=1

w˜ t−j

(
k
))

...

(
G−1

(R(n)
t−q

n+ 1

))2
+

s∑

k=1

w˜ t−q

(
k
)

1 +

q∑

j=1

θj

((
G−1

( R(n)
t−j

n+ 1

))2
+

s∑

k=1

w˜ t−j

(
k)
)




,

where wt−j

(
k
)
is computed by replacing all Zt’s by G

−1(R
(n)
t /(n+ 1)), and m

(n)
g,(2), given in (4.5), is such that the

expected value of ∆
˜

(n)(θ, g) is exactly zero for every n.

Lemma 7 implies that m
(n)
g,(2) = o

(
n−1/2

)
, hence can be omitted, yielding

∆
˜

(n)(θ, g) =
1√
n

n∑

t=1

ψg

(
G−1

(
R

(n)
t

n+ 1

))




(
G−1

(R(n)
t−1

n+ 1

))2
+

s∑

k=1

w˜ t−1

(
k
)

1 +

q∑

j=1

θj

((
G−1

(R(n)
t−j

n+ 1

))2
+

s∑

k=1

w˜ t−j

(
k
))

...

(
G−1

(R(n)
t−q

n+ 1

))2
+

s∑

k=1

w˜ t−q

(
k
)

1 +

q∑

j=1

θj

((
G−1

(R(n)
t−j

n+ 1

))2
+

s∑

k=1

w˜ t−j

(
k)
)




.

A.4.2 AR(p)-LARCH(q)

Consider the discrete-time bilinear process with dynamics

Yt =

p∑

j=1

ϑjYt−j +

(
1 +

q∑

l=1

βlYt−l

)
ǫt, (A.12)

where ǫt ∼ g, with mean zero and unit variance, and θ = (ϑ1, ..., ϑq, β1, ..., βq) satisfies Assumptions A1-A3 in

Giraitis and Surgailis (2002). Model (A.12) includes as a special case the AR(p) process (for p > 0 and q = 0) and

(for p = 0 and q > 0) the LARCH(q) (namely, Linear ARCH) process. Following Francq and Zaköıan (2010), we

assume here that infθ∈Θ (1 +
∑q

l=1 βlYt−l) is almost surely bounded away from zero— sufficient condition for this

is a compactly supported innovation and compact parameter space Θ with suitable endpoints.

Because of the combination of AR with LARCH process, the ULAN central sequence for θ features both a

v



location and a scale component:

∆(n)(θ, g) =
1√
n

n∑

t=1

(
1 +

q∑

l=1

βlYt−l

)−1




φg (Zt(θ))




Yt−1

...

Yt−p




ψg (Zt(θ))




Yt−1

...

Yt−q







. (A.13)

Let A(z) :=
∑∞

j=1 ϑjz
j, B(z) :=

∑∞
l=1 βlz

l be analytic on |z| < 1, with B(z) 6= 1, and write

U(z) := (1−B(z))−1 =

∞∑

j=0

ujz
j, and W (z) := A(z)U(z) =

∞∑

j=0

wjz
j.

Giraitis and Surgailis (2002) show the invertibility of Yt, expressing it as the convergent orthogonal Volterra series

Yt =

∞∑

k=1

∑

jk<..<j1<t

ut−j1wj1−j2 ...wjk−1−jkǫj1 ...ǫjk , (A.14)

which depends on a infinite number of lagged shocks.

From Theorem 2.2 in Giraitis and Surgailis (2002) it follows that Yt = Y s
t + oP(1), where Y

s
t is obtained by

truncating Eq. (A.14) to the s-th term, with s = s(n) → ∞ as n→ ∞. Additionally, it follows from the continuous

mapping theorem that (1 +
∑q

l=1 βlY
s
t−l)

−1 = (1 +
∑q

l=1 βlYt−l)
−1 + oP(1), for every t as n→ ∞. As a result,

et−j =
Yt−j

(1 +
∑q

l=1 βlYt−l)
−

Y s
t−j

(1 +
∑q

l=1 βlY
s
t−l)

= oP(1), (A.15)

so that, letting

ζt :=
1

1 +
∑q

l=1 βl

(∑s
k=1

∑
jk<..<j1<t−l gt−j1wj1−j2 ...wjk−1−jkZj1 ...Zjk

) ,

∆
(t,s)
(1) (θ, g) = ζtφg (Zt(θ))




∑s
k=1

∑
jk<..<j1<t−1 gt−j1wj1−j2 ...wjk−1−jkZj1 ...Zjk

...
∑s

k=1

∑
jk<..<j1<t−p gt−j1wj1−j2 ...wjk−1−jkZj1 ...Zjk



,

and

∆
(t,s)
(2) (θ, g) = ζtψg (Zt (θ))




∑s
k=1

∑
jk<..<j1<t−1 gt−j1wj1−j2 ...wjk−1−jkZj1 ...Zjk

...
∑s

k=1

∑
jk<..<j1<t−q gt−j1wj1−j2 ...wjk−1−jkZj1 ...Zjk



,

vi



we have that

∆(n)(θ, g) =
1√
n

n∑

t=1


 ∆

(t,s)
(1) (θ, g)

∆
(t,s)
(2) (θ, g)


 (A.16)

is another version of the central sequence in (A.13), since it approximates ∆(n)(θ, g) up to oP(1). The rank-based

central sequence again is obtained as the approximate-score projection of this central sequence ∆(n)(θ, g) onto the

invariant σ-algebra generated by the ranks, namely replacing, in (A.16), Zt with G
−1(R

(n)
t /(n+ 1)) for every t and

re-centering the resulting rank-based statistic. We illustrate this construction in the AR(1)-LARCH(1) example.

AR(1)-LARCH(1). Let us consider model (4.8). The truncated Volterra series here takes the form

Y s
t =

s∑

k=1

(β1/ϑ1)
k

∑

jk,...,j1<t

ϑt−jk
1 ǫj1 , ..., ǫjk , ,

which is such that Yt = Y s
t + oP(1); an alternative representation for Y s

t follows from iterating Eq. (4.8):

Y s
t = ǫt +

s∑

k=1

ǫt−k

t∏

m=t−k+1

(β1ǫm + ϑ1), (A.17)

which is still implying that Yt = Y s
t + oP(1), see Giraitis and Surgailis (2002, page 282). Setting

Zt := (Yt − ϑ1Yt−1)/(1 + β1Yt−1),

and θ := (ϑ1, β), ULAN holds with central sequence

∆(n)(θ, g) =
1√
n

n∑

t=1


 φg (Zt)

φg (Zt)Zt − 1




∑s
k=1 (β1/ϑ1)

k∑
jk,...,j1<t−1 ϑ

t−jk
1 Zj1 , ..., Zjk

1 + β1
∑s

k=1 (β1/ϑ1)
k∑

jk,...,j1<t−1 ϑ
t−jk
1 Zj1 , ..., Zjk

=
1√
n

n∑

t=1


 φg (Zt)

φg (Zt)Zt − 1


 Zt +

∑s
k=1 Zt−k

∏t
m=t−k+1(β1Zm + ϑ1)

1 + β1(Zt +
∑s

k=1 Zt−k

∏t
m=t−k+1(β1Zm + ϑ1))

, (A.18)

where the last expression, which is easier to work with, follows from Eq. (A.17). To derive the rank-based central

sequence, put

ζ
˜
t :=

1

1 + β1

(
G−1

(
R

(n)
t

n+1

)
+
∑s

k=1G
−1

(
R

(n)
t−k

n+1

)∏t
m=t−k+1

(
β1G−1

(
R

(n)
m

n+1

)
+ ϑ1

)) .
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Then, letting

∆
˜

(t,s)
(1) (θ, g) :=

(
ζ
˜
tφg

(
G−1

(
R

(n)
t

n+ 1

))
−m

(n)
g,(1)

)

×
(
G−1

(
R

(n)
t

(n+ 1)

)
+

s∑

k=1

G−1

(
R

(n)
t−k

n+ 1

)
t∏

m=t−k+1

(
β1G

−1

(
R

(n)
m

n+ 1

)
+ ϑ1

))
,

and

∆
˜

(t,s)
(2) (θ, g) := ζ

˜
t

(
ψg

(
G−1

(
R

(n)
t

n+ 1

))
−m

(n)
g,(2)

)

×
(
G−1

(
R

(n)
t

(n+ 1)

)
+

s∑

k=1

G−1

(
R

(n)
t−k

n+ 1

)
t∏

m=t−k+1

(
β1G

−1

(
R

(n)
m

n+ 1

)
+ ϑ1

))
,

with m
(n)
g,(1) and m

(n)
g,(2) such that the expectations of ∆

˜
(t,s)
(1) (θ, g) and ∆

˜
(t,s)
(2) (θ, g) are exactly zero. We set

∆
˜

(n)(θ, g) := − 1√
n

n∑

t=1


 ∆˜

(n)
(1) (θ, g)

∆˜
(n)
(1) (θ, g)


 . (A.19)

Finally, note that as in the AR case of Hallin and Werker (2003) and the case of ARCH processes discussed in A.4.1,

Lemma 7 implies that m
(n)
g,(1) and m

(n)
g,(2) are o

(
n−1/2

)
, hence can be omitted.
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