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Preface

Multivariate extreme value theory (MEVT) is the
proper toolbox for analyzing several extremal
events simultaneously. Its practical relevance in
particular for risk assessment is, consequently,
obvious. But on the other hand MEVT is by no
means easy to access; its key results are
formulated in a measure theoretic setup, a fils
rouge is not visible.
Writing the ’angular measure’ in MEVT in terms
of a random vector, however, provides the
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missing fils rouge: Every result in MEVT, every
relevant probability distribution, be it a
max-stable one or a generalized Pareto
distribution, every relevant copula, every tail
dependence coefficient etc. can be formulated
using a particular kind of norm on multivariate
Euclidean space, called D-norm. Norms are
introduced in each course on mathematics as
soon as the multivariate Euclidean space is
introduced. The definition of an arbitrary D-norm
requires only the additional knowledge on random
variables and their expectations. But D-norms do
not only constitute the fils rouge through MEVT,
they are of mathematical interest of their own.
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In Sessions 1 to 3 we provide in the introductory
chapter the theory of D-norms in detail. The
second chapter introduces multivariate
generalized Pareto distributions and max-stable
distributions via D-norms. The third chapter
provides the extension of D-norms to functional
spaces and, thus, deals with generalized Pareto
processes and max-stable processes.
Session 4, in addition to a brief summary of
univariate EVT and D-norms, provides a relaxed
tour through the essentials of MEVT, due to the
D-norms approach. Quite recent results on
multivariate records complete this text.
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’We do not want to calculate,
we want to reveal structures.’

- David Hilbert, 1930 -
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Chapter 1

Introduction

1.1 Norms and D-Norms

General Definition of a Norm

Definition 1.1.1. A function f : Rd → [0,∞) is a norm, if it
satisfies for all x,y ∈ Rd, λ ∈ R

f (x) = 0 ⇐⇒ x = 0 ∈ Rd, (1.1)

f (λx) = |λ| f (x), (1.2)

f (x + y) ≤ f (x) + f (y). (1.3)
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Condition (1.2) is called homogeneity and condition (1.3) is
called triangle inequality or ∆-inequality, for short.

A norm f : Rd → [0,∞) is typically denoted by

‖x‖ = f (x), x ∈ Rd. (1.4)

Each norm on Rd defines a distance, or metric on Rd via

d(x, y) = ‖x− y‖ , x,y ∈ Rd. (1.5)

Well known examples of norms are the sup-norm

‖x‖∞ := max
1≤i≤d

|xi| (1.6)

and the L1-norm

‖x‖1 :=

d∑
i=1

|xi| , x = (x1, . . . , xd) ∈ Rd. (1.7)

2



The Logistic Norm

Not that obvious is the logistic family

‖x‖p :=

(
d∑
i=1

|xi|p
)1/p

, 1 ≤ p <∞. (1.8)

The corresponding ∆-inequality

f (x + y) ≤ f (x) + f (y)

is known as the Minkowski-inequality1.

Lemma 1.1.1. We have for 1 ≤ p ≤ q ≤ ∞ and x ∈ Rd

(i) ‖x‖p ≥ ‖x‖q,
(ii) lim

p→∞
‖x‖p = ‖x‖∞.

Proof. (i) The inequality is obvious for q =∞: ‖x‖∞ ≤
(∑d

i=1 |xi|
q
)1/q

.
1cf. Rudin (1976, Proposition 3.5)
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Now consider 1 ≤ p ≤ q < ∞ and choose x 6= 0 ∈ Rd. Put
S := ‖x‖p. Then we have∥∥∥x

S

∥∥∥
p

= 1

and we have to establish∥∥∥x
S

∥∥∥
q
≤ 1.

As

|xi|
S
∈ [0, 1]

and thus (
|xi|
S

)q
≤
(
|xi|
S

)p
, 1 ≤ i ≤ d,
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we obtain∥∥∥x
S

∥∥∥
q

=

(
d∑
i=1

(
|xi|
S

)q)1
q

≤

(
d∑
i=1

(
|xi|
S

)p)1
q

=

(∥∥∥x
S

∥∥∥
p

)p
q

= 1
p
q = 1,

which is (i).
(ii) We have, moreover, for x 6= 0 ∈ Rd and p ∈ [1,∞)

‖x‖∞ ≤ ‖x‖p =

(
d∑
i=1

(
|xi|
‖x‖∞

)p)1
p

‖x‖∞ ≤ d
1
p ‖x‖∞ −−−→p→∞

‖x‖∞ ,

which implies (ii).

Norms by Quadratic Forms

Let A = (aij)1≤i,j≤d be a positive definite d × d-matrix, i.e.,
the matrix A is symmetric, A = Aᵀ = (aji)1≤i,j≤d, and satisfies

xᵀAx =
∑

1≤i,j≤d

xiaijxj > 0, x ∈ Rd, x 6= 0 ∈ Rd.
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Then

‖x‖A :=
(
xTAx

)1
2 , x ∈ Rd,

defines a norm on Rd.

With A =

(
1 0
0 1

)
we obtain, for example, ‖x‖A = (x21 +

x22)
1/2 = ‖x‖2.

Conditions (1.1) and (1.2) are obviously satisfied. The ∆-
inequality follows by means of the Cauchy-Schwarz inequal-
ity2

(xᵀAy)2 ≤ (xᵀAx) (yᵀAy) , x,y ∈ Rd,

as follows:

‖x + y‖2A = (x + y)T A (x + y)

= xTAx + yTAx + xTAy + yTAy

≤ xTAx + 2(xTAx)
1
2(yTAy)

1
2 + yTAy

2cf. Rudin (1976)
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=
(

(xTAx)
1
2 + (yTAy)

1
2

)2
.

Definition of D-Norms

Let now Z = (Z1, . . . , Zd) be a random vector (rv), whose
components satisfy

Zi ≥ 0, E(Zi) = 1, 1 ≤ i ≤ d.

Then

‖x‖D := E

(
max
1≤i≤d

(|xi|Zi)
)
, x ∈ Rd,

defines a norm, called D-norm and Z is called generator of
‖x‖D.

The homogeneity condition (1.2) is obviously satisfied. Fur-
ther, we have the bounds

‖x‖∞ = max
1≤i≤d

|xi|
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= max
1≤i≤d

E (|xi|Zi)

≤ E

(
max
1≤i≤d

(|xi|Zi)
)

≤ E

(
d∑
i=1

|xi|Zi

)

=

d∑
i=1

|xi|E(Zi)

= ‖x‖1 , x ∈ Rd,

i.e.,

‖x‖∞ ≤ ‖x‖D ≤ ‖x‖1 , x ∈ Rd. (1.9)

This implies condition (1.1). The ∆−inequality is easily seen
by

‖x + y‖D = E

(
max
1≤i≤d

(|xi + yi|Zi)
)
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≤ E

(
max
1≤i≤d

((|xi| + |yi|)Zi)
)

≤ E

(
max
1≤i≤d

(|xi|Zi) + max
1≤i≤d

(|yi|Zi)
)

= E

(
max
1≤i≤d

(|xi|Zi)
)

+ E

(
max
1≤i≤d

(|yi|Zi)
)

= ‖x‖D + ‖y‖D .

Basic Properties of D-Norms

Denote by ej = (0, . . . , 0, 1, 0, . . . , 0) ∈ Rd the j-th unit vector
in Rd, 1 ≤ j ≤ d. Each D-norm satisfies

‖ej‖D = E

(
max
1≤i≤d

(δijZi)

)
= E(Zj) = 1,

where δij = 1 if i = j and zero elsewhere, i.e., each D-norm
is standardized.
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Each D-norm is monotone, i.e., we have for 0 ≤ x ≤ y,
where this inequality is taken componentwise,

‖x‖D = E

(
max
1≤i≤d

(xiZi)

)
≤ E

(
max
1≤i≤d

(yiZi)

)
= ‖y‖D .

There are norms that are not monotone: Choose for ex-
ample

A =

(
1 δ
δ 1

)
with δ ∈ (−1, 0). The matrix A is positive definite, the norm

‖x‖A = (xTAx)
1
2 = (x21 + 2δx1x2 + x22)

1
2 is not monotone; just

compare (x1, x2) with (x1, x2 + ε).
Each D-norm is obviously radial symmetric, i.e., changing

the sign of arbitrary components of x ∈ Rd does not alter
the value of ‖x‖D. This means that the values of a D-
norm are completely determined by its values on the subset
{x ∈ Rd : x ≥ 0}. The above norm ‖·‖A does not have this
property.

10



1.2 Examples of D-Norms

The two Extremal D-Norms

Choose the constant generator Z := (1, 1, . . . , 1). Then

‖x‖D = E

(
max
1≤i≤d

(|xi|Zi)
)

= E

(
max
1≤i≤d

(|xi|)
)

= ‖x‖∞ ,

i.e., the sup-norm is a D-norm.
Let X ≥ 0 be a rv with E(X) = 1 and put Z := (X,X, . . . , X).

Then Z is a generator of the D-norm

‖x‖D = E( max
1≤i≤d

(|xi|Zi))

= E( max
1≤i≤d

(|xi|X))

= max
1≤i≤d

(|xi|)E(X)
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= ‖x‖∞E(X)

= ‖x‖∞ .

This example shows that the generator of a D-norm is in
general not uniquely determined, even its distribution is not.

Let now Z be a random permutation of (d, 0, . . . , 0) ∈ Rd

with equal probability 1/d, i.e.,

Zi =

{
d, with probability 1/d

0, with probability 1− 1/d
, 1 ≤ i ≤ d,

and Z1 + · · · + Zd = d.
The rv Z is consequently the generator of a D-norm:

‖x‖D = E

(
max
1≤i≤d

(|xi|Zi)
)

= E

max
1≤i≤d

(|xi|Zi)
d∑
j=1

1{Zj=d}


12



= E

 d∑
j=1

max
1≤i≤d

(|xi|Zi) 1{Zj=d}


= E

 d∑
j=1

|xj| d 1{Zj=d}


=

d∑
j=1

|xj| dE
(

1{Zj=d}

)
=

d∑
j=1

|xj| dP (Zj = d)

=

d∑
j=1

|xj|

= ‖x‖1 ,

i.e., ‖·‖1 is a D-norm as well.
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Inequality (1.9) shows that the sup-norm ‖·‖∞ is the small-
est D-norm and that the L1-norm ‖·‖1 is the largest D-norm.

Each Logistic Norm is a D-Norm

Proposition 1.2.1. Each logistic norm ‖x‖p =
(∑d

i=1 |xi|
p )1/p,

1 ≤ p <∞, is a D-norm. For 1 < p <∞ a generator is given by

Z = (Z1, . . . , Zd) =

(
X1

Γ(1− p−1)
, . . . ,

Xd

Γ(1− p−1)

)
,

where X1, . . . , Xd are independent and identically (iid) Fréchet-
distributed rv, i.e.,

P (Xi ≤ x) = exp(−x−p), x > 0, i = 1, . . . , d,

with E(Xi) = Γ(1− p−1), 1 ≤ i ≤ d.

Γ(s) =
∫∞
0 ts−1 exp(−t) dt, s > 0, denotes the Gamma function.
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Proof. Put for notational convenience µ := E(X1) = Γ(1−p−1). From
the fact that the expectation of a non-negative rv X is in general given
by
∫∞
0 P (X > t) dt (use Fubini’s theorem), we obtain

E

(
max
1≤i≤d

|xi|Zi
)

=

∫ ∞
0

P

(
max
1≤i≤d

|xi|Zi > t

)
dt

=

∫ ∞
0

1− P
(

max
1≤i≤d

|xi|Zi ≤ t

)
dt

=

∫ ∞
0

1− P
(
Zi ≤

t

|xi|
, 1 ≤ i ≤ d

)
dt

=

∫ ∞
0

1−
d∏
i=1

P

(
Zi ≤

t

|xi|

)
dt

=

∫ ∞
0

1−
d∏
i=1

exp

(
−
(
|xi|
tµ

)p)
dt
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=

∫ ∞
0

1− exp

(
−
∑d

i=1 |xi|
p

(tµ)p

)
dt

The substitution t 7→ t
(∑d

i=1 |xi|
p
)1
p
/µ now implies that the integral

above equals

(∑d
i=1 |xi|

p
)1
p

µ

∫ ∞
0

1− exp

(
− 1

tp

)
dt =

‖x‖p
E(X1)

∫ ∞
0

P (X1 > t) dt

=
‖x‖p
E(X1)

E(X1)

= ‖x‖p .
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1.3 Takahashi’s Characterizations

Takahashi’s Characterizations of ‖·‖∞ and ‖·‖1

Theorem 1.3.1 (Takahashi (1988)). Let ‖·‖D be an arbitrary D-
norm on Rd. Then we have the equivalences

‖·‖D = ‖·‖1 ⇐⇒ ∃y > 0 ∈ Rd : ‖y‖D = ‖y‖1 ,
‖·‖D = ‖·‖∞ ⇐⇒ ‖1‖D = 1

Corollary 1.3.1. We have for an arbitrary D-norm ‖·‖D on Rd

‖·‖D =

{
‖·‖∞
‖·‖1

⇐⇒ ‖1‖D =

{
1

d
.

Proof. To prove Theorem 1.3.1 we only have to show the implication
“⇐”. Let (Z1, . . . , Zd) be a generator of ‖·‖D.
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(i) Suppose we have ‖y‖D = ‖y‖1 for some y > 0 ∈ Rd, i.e.,

E( max
1≤i≤d

(yiZi)) =

d∑
i=1

yi

=

d∑
i=1

yiE(Zi)

= E

(
d∑
i=1

yiZi

)
.

This leads to

E

(
d∑
i=1

yiZi

)
− E

(
max
1≤i≤d

(yiZi)

)
= E

(
d∑
i=1

yiZi − max
1≤i≤d

(yiZi)︸ ︷︷ ︸
≥0

)
= 0

⇒
d∑
i=1

yiZi − max
1≤i≤d

(yiZi) = 0 a.s. (almost surely)
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⇒
d∑
i=1

yiZi = max
1≤i≤d

(yiZi) a.s.

Hence Zi > 0 for some i ∈ {1, . . . , d} implies Zj = 0 for all j 6= i,
and we have for arbitrary x ≥ 0

d∑
i=1

xiZi = max
1≤i≤d

(xiZi) a.s.

⇒ E

(
d∑
i=1

xiZi

)
= E

(
max
1≤i≤d

(xiZi)

)
⇒ ‖x‖1 = ‖x‖D .

(ii) We have the following list of conclusions:

‖(1, . . . , 1)‖D = 1

⇒ E

(
max
1≤i≤d

Zi

)
= E(Zj), 1 ≤ j ≤ d,
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⇒ E

(
max
1≤i≤d

Zi − Zj︸ ︷︷ ︸
≥0

)
= 0, 1 ≤ j ≤ d,

⇒ max
1≤i≤d

Zi − Zj = 0 a.s., 1 ≤ j ≤ d,

⇒ Z1 = Z2 = . . . = Zd = max
1≤i≤d

Zi

⇒ E

(
max
1≤i≤d

(|xi|Zi)
)

= E

(
max
1≤i≤d

(|xi|Z1)

)
= E(‖x‖∞Z1)

= ‖x‖∞E(Z1)

= ‖x‖∞ , x ∈ Rd.

Theorem 1.3.1 can easily be generalized to sequences of
D-norms.
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Theorem 1.3.2. Let ‖·‖Dn , n ∈ N, be a sequence of D-norms on
Rd.

(i) ∀x ∈ Rd : ‖x‖Dn →
n→∞

‖x‖1 ⇐⇒ ∃y > 0 : ‖y‖Dn →
n→∞

‖y‖1
(ii) ∀x ∈ Rd : ‖x‖Dn →

n→∞
‖x‖∞ ⇐⇒ ‖1‖Dn →

n→∞
1

Corollary 1.3.1 carries over.

Proof. Let
(
Z

(n)
1 , . . . , Z

(n)
d

)
be a generator of ‖·‖Dn. Again we only

need to show the implication “⇐”.
(i) We suppose ‖y‖1 − ‖y‖Dn →n→∞ 0 for some y > 0 ∈ Rd. With

the notation Mj :=
{
yjZ

(n)
j = max1≤i≤d yiZ

(n)
i

}
we get for every
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j = 1, . . . , d

‖y‖1 − ‖y‖Dn = E


d∑
i=1

yiZ
(n)
i − max

1≤i≤d
yiZ

(n)
i︸ ︷︷ ︸

≥0


≥ E

((
d∑
i=1

yiZ
(n)
i − max

1≤i≤d
yiZ

(n)
i

)
1Mj

)

= E

 d∑
i=1
i 6=j

yiZ
(n)
i 1Mj


=

d∑
i=1
i 6=j

yiE
(
Z

(n)
i 1Mj

)
→n→∞ 0

as the left hand side of this equation converges to zero by assumption:
22



‖y‖1 − ‖y‖Dn →n→∞ 0. Since yi > 0 for all i = 1, . . . , d, we have

E
(
Z

(n)
i 1Mj

)
→n→∞ 0 (1.10)

for all i 6= j. Now take an arbitrary x ∈ Rd. From (1.9) we know that
known that

0 ≤ ‖x‖1 − ‖x‖Dn

= E


d∑
i=1

|xi|Z(n)
i − max

1≤i≤d
|xi|Z(n)

i︸ ︷︷ ︸
≥0


≤ E

 d∑
j=1

(
d∑
i=1

|xi|Z(n)
i − max

1≤i≤d
|xi|Z(n)

i

)
1Mj


=

d∑
j=1

E

((
d∑
i=1

|xi|Z(n)
i − max

1≤i≤d
|xi|Z(n)

i

)
1Mj

)
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=

d∑
j=1

d∑
i=1
i 6=j

|xi|E
(
Z

(n)
i 1Mj

)
︸ ︷︷ ︸

by (1.10)−−−−→
n→∞

0

→n→∞ 0

⇒ ∀x ∈ Rd : ‖x‖Dn →n→∞ ‖x‖1 .
(ii) We use inequality (1.9) and obtain

0 ≤ ‖x‖Dn − ‖x‖∞

= E

(
max
1≤i≤d

|xi|Z(n)
i

)
− max

1≤i≤d
|xi|

≤
(

max
1≤i≤d

|xi|
)
E

(
max
1≤i≤d

Z
(n)
i

)
− max

1≤i≤d
|xi|

= ‖x‖∞
(
E

(
max
1≤i≤d

Z
(n)
i

)
− 1

)
= ‖x‖∞ (‖1‖Dn − 1) −−−→

n→∞
0.
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Theorem 1.3.3. Let ‖·‖Dn, n ∈ N, be a sequence of D-norms on
Rd. We have

(i) ‖·‖Dn →
n→∞

‖·‖1 ⇐⇒ ∀ 1 ≤ i < j ≤ d : ‖ei + ej‖Dn →
n→∞

2

(ii) ‖·‖Dn →
n→∞

‖·‖∞ ⇐⇒ ∃ i ∈ {1, . . . , d} ∀j 6= i : ‖ei + ej‖Dn

→
n→∞

1.

Proof. (i) For all 1 ≤ i < j ≤ d we have

2− ‖ei + ej‖D(n)

= E
(
Z

(n)
i + Z

(n)
j

)
− E

(
max(Z

(n)
i , Z

(n)
j )
)

= E
(
Z

(n)
i + Z

(n)
j −max(Z

(n)
i , Z

(n)
j )
)

≥ E

((
Z

(n)
i + Z

(n)
j −max(Z

(n)
i , Z

(n)
j )
)

1{
Z
(n)
j =max1≤k≤d Z

(n)
k

})
25



= E

(
Z

(n)
i 1{

Z
(n)
j =max1≤k≤d Z

(n)
k

}) ≥ 0.

Therefore E

(
Z

(n)
i 1{

Z
(n)
j =max1≤k≤d Z

(n)
k

}) −−−→
n→∞

0, which is (1.10) for

y = 1. We can repeat the remaining steps of the preceding proof and
get the desired assertion.
(ii) For our given value of i we have

0 ≤ ‖1‖Dn − 1

= E

(
max
1≤k≤d

Z
(n)
k − Z

(n)
i

)
≤

d∑
j=1

E

((
max
1≤k≤d

Z
(n)
k − Z

(n)
i

)
1{Z(n)

j =max1≤k≤d Z
(n)
k }

)

=

d∑
j=1

E

((
max

(
Z

(n)
i , Z

(n)
j

)
− Z(n)

i

)
1{Z(n)

j =max1≤k≤d Z
(n)
k }

)
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≤
d∑
j=1

E
(

max
(
Z

(n)
i , Z

(n)
j

)
− Z(n)

i

)
=

d∑
j=1
j 6=i

(
‖ei + ej‖Dn − 1

)
→n→∞ 0

which proves the assertion by part (ii) of Theorem 1.3.2.

Corollary 1.3.2. Let ‖·‖D be an arbitrary D-norm on Rd.

(i) ‖·‖D = ‖·‖1 ⇐⇒ ∀ 1 ≤ i < j ≤ d : ‖ei + ej‖D = 2 =
‖ei + ej‖1

(ii) ‖·‖D = ‖·‖∞ ⇐⇒ ∃ i ∈ {1, . . . , d} ∀j 6= i : ‖ei + ej‖D =
1 = ‖ei + ej‖∞

Proof. Put ‖·‖Dn = ‖·‖D in the preceding theorem.
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Remark 1.3.1. Choose 1 ≤ i < j ≤ d. Note that ‖(x, y)‖Di,j :=

‖xei + yej‖D, x, y ∈ R, defines a D-norm on R2 with genera-
tor (Zi, Zj), where (Z1, ...Zd) generates ‖·‖D. From Takahashi’s
Theorem, part (i), we obtain that the condition

∀1 ≤ i < j ≤ d : ‖ei + ej‖D = 2

is equivalent with the condition

∀x, y ∈ R, 1 ≤ i < j ≤ d : ‖xei + yej‖D = ‖xei + yej‖1 = |x| + |y| .

1.4 Max-Characteristic Function

The Max-Characteristic Function of a Generator

Recall that the generator of a D-norm is not uniquely deter-
mined, even its distribution is not.
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Lemma 1.4.1 (Balkema). Let X = (X1, X2, . . . , Xd) ≥ 0, Y =
(Y1, Y2, . . . , Yd) ≥ 0 be rv with E(Xi), E(Yi) <∞, 1 ≤ i ≤ d. If
we have for each x > 0 ∈ Rd

E (max(1, x1X1, . . . , xdXd)) = E (max(1, x1Y1, . . . , xdYd)) ,

then X =D Y , where “=D” denotes equality in distribution.

Proof. We have for x > 0 and c > 0

E

(
max

(
1,
X1

cx1
, . . . ,

Xd

cxd

))
=

∫ ∞
0

1− P
(

max

(
1,
X1

cx1
, . . . ,

Xd

cxd

)
≤ t

)
dt

=

∫ ∞
0

1− P (1 ≤ t,Xi ≤ tcxi, 1 ≤ i ≤ d) dt

= 1 +

∫ ∞
1

1− P (Xi ≤ tcxi, 1 ≤ i ≤ d) dt
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The substitution t 7→ t/c yields that the right-hand side above equals

1 +
1

c

∫ ∞
c

1− P (Xi ≤ txi, 1 ≤ i ≤ d) dt.

Repeating the preceding arguments with Yi in place of Xi, we obtain
from the assumption that for all c > 0∫ ∞

c

1− P (Xi ≤ txi, 1 ≤ i ≤ d) dt

=

∫ ∞
c

1− P (Yi ≤ txi, 1 ≤ i ≤ d) dt.

Taking right derivatives with respect to c we obtain for c > 0

1− P (Xi ≤ cxi, 1 ≤ i ≤ d) = 1− P (Yi ≤ cxi, 1 ≤ i ≤ d),

and, thus, the assertion.
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Corollary 1.4.1. If (1, Z1, . . . , Zd) is the generator of a D-norm,
then the distribution of (Z1, . . . , Zd) is uniquely determined.

Take, for example, Z = (1, . . . , 1) ∈ Rd, which generates the
sup-norm ‖·‖∞ on Rd. Then (1,Z) generates the sup-norm
on Rd+1.

Let, on the other hand, Z be a random permutation of
(d, 0, . . . , 0) ∈ Rd, which generates ‖·‖1. The D-norm gener-
ated by (1,Z) on Rd+1 is

‖x‖D = E (max (|x1| , |x2|Z2, . . . , |xd+1|ZD))

= E

(
d∑
i=1

(max (|x1| , |x2|Z2, . . . , |xd+1|ZD)) 1(Zi = d)

)

=

d∑
i=1

E ((max (|x1| , |x2|Z2, . . . , |xd+1|ZD)) 1(Zi = d))
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=
1

d

d∑
i=2

max(|x1| , d |xi|)

=

d∑
i=2

max

(
|x1|
d
, |xi|

)
.

Let Z = (Z1, . . . , Zd) be the generator of a D-norm ‖·‖D.
Then we call

ϕ(x) := E(max(1, |x1|Z1, . . . |xd|Zd)), x ∈ Rd,

the max-characteristic function of Z.
The max-characteristic function of the random permuta-

tion of (d, 0, . . . , 0), for instance, is

ϕ(x) =

d∑
i=1

max

(
1

d
, |xi|

)
, x ∈ Rd.

The max-characteristic function of (1, . . . , 1) is

ϕ(x) = max (1, ‖x‖∞) , x ∈ Rd.
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We have in general

ϕ(x) = E(max(1, |x1|Z1, . . . , |xd|Zd)) ≥ E( max
1≤i≤d

(|xi|Zi)) = ‖x‖D

and, thus,

0 ≤ ϕ(x)− ‖x‖D
= E(max(1, |x1|Z1, . . . , |xd|Zd)− max

1≤i≤d
(|xi|Zi))

= E

(
(1− max

1≤i≤d
(|xi|Zi))1{max1≤i≤d(|xi|Zi)<1}

)
, x ∈ Rd,

if Z generates the D-norm ‖·‖D.

1.5 Convexity of the Set of D-Norms

The Set of D-Norms is Convex

Proposition 1.5.1. The set of D-norms on Rd is convex, i.e., if

33



‖·‖D1
and ‖·‖D2

are D-norms, then

‖·‖λD1+(1−λ)D2
:= λ ‖·‖D1

+ (1− λ) ‖·‖D2

is for each λ ∈ [0, 1] a D-norm as well.

Take, for example, the convex combination of the two D-
norms ‖·‖∞ and ‖·‖1:

λ ‖x‖∞ + (1− λ) ‖x‖1 = λ max
1≤i≤d

|xi| + (1− λ)

d∑
i=1

|xi| .

This is the Marshall-Olkin D-norm with parameter λ ∈ [0, 1].

Proof of Proposition 1.5.1. Let ξ be a rv with P (ξ = 1) = λ =
1 − P (ξ = 2) and independent of Z(1) and Z(2), where Z(1), Z(2)

are generators of ‖·‖D1
, ‖·‖D2

. Then Z := Z(ξ) is a generator of
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‖·‖λD1+(1−λ)D2
, as we have for x ≥ 0

E

(
max
1≤i≤d

xiZ
(ξ)
i

)
= E

 2∑
j=1

max
1≤i≤d

xiZ
(ξ)
i 1{ξ=j}


=

2∑
j=1

E

((
max
1≤i≤d

xiZ
(ξ)
i

)
1{ξ=j}

)

=

2∑
j=1

E

((
max
1≤i≤d

xiZ
(j)
i

)
1{ξ=j}

)

=

2∑
j=1

E

(
max
1≤i≤d

xiZ
(j)
i

)
E
(
1{ξ=j}

)
= λE

(
max
1≤i≤d

xiZ
(1)
i

)
+ (1− λ)E

(
max
1≤i≤d

xiZ
(2)
i

)
.
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A Bayesian Type of D-Norms

The preceding convexity of the set of D-norms can be viewed
as a special case of a Bayesian type D-norm as illustrated by
the following example.

Consider the logistic family
{
‖·‖p : p ≥ 1

}
of D-norms as

defined in (1.8). Let f be a probability density on [1,∞), i.e.,
f ≥ 0 and

∫∞
1 f (p) dp = 1. Then

‖x‖f :=

∫ ∞
1

‖x‖p f (p) dp, x ∈ Rd,

defines a D-norm on Rd. This can easily be seen as follows.
Let X be a rv on [1,∞) with this probability density f (·) and
suppose that X is independent from each generator Zp of
‖·‖p, p ≥ 1. Then

Zf := ZX
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generates the D-norm ‖·‖f :

E(Zf) =

∫ ∞
1

E(ZX | X = p)f (p) dp =

∫ ∞
1

E(Zp)f (p) dp = 1

and

E

(
max
1≤i≤d

(|xi|Zf,i)
)

= E

(
max
1≤i≤d

(|xi|ZX,i)
)

=

∫ ∞
1

E

(
max
1≤i≤d

(|xi|ZX,i) | X = p

)
f (p) dp

=

∫ ∞
1

‖x‖p f (p) dp.

If we take, for instance, the Pareto density fλ(p) := λp−(1+λ),
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p ≥ 1, with parameter λ > 0, then we obtain

‖x‖fλ =

∫ ∞
1

(
p∑
i=1

|xi|p
)1/p

λp−(1+λ) dp, x ∈ Rd.

The convex combination of two arbitrary D-norms can obvi-
ously be embedded in this Bayesian type approach.

1.6 D-Norms and Copulas

D-Norms and Copulas

Let the rv U = (U1, . . . , Ud) follow a copula, i.e., each compo-
nent Ui is uniformly distributed on (0, 1). As E(Ui) =

∫ 1

0 u du =
1/2 , the rv Z := 2U is generator of a D-norm.

But not every D-norm can be generated this way: take, for
example, d = 2 and ‖(x, y)‖1 = |x| + |y|. Suppose that there

38



exists a rv U = (U1, U2) following a copula such that

‖(x, y)‖1 = 2E (max(|x|U1, |y|U2)) , x, y ∈ R.

Putting x = y = 1 we obtain

2 = 2E
(

max(U1, U2)︸ ︷︷ ︸
∈[0,1]

)
and, thus,

P (max(U1, U2) = 1) = 1.

But

P (max(U1, U2) = 1) = P ({U1 = 1} ∪ {U2 = 1})
≤ P (U1 = 1) + P (U2 = 1) = 0.

It is, moreover, obvious, that ‖·‖1 on Rd with d ≥ 3 cannot
be generated by 2U , as ‖(1, . . . , 1)‖1 = d > 2E (max1≤i≤dUi).

There are consequently strictly more D-norms than copu-
las.
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1.7 Normed Generators Theorem

By |T | we denote in what follows the number of elements in
a set T .

The following auxiliary result can easily be proved by in-
duction, just use the equation

min(max(a1, . . . , an), an+1) = max(min(a1, an+1), . . . ,min(an, an+1))).

Lemma 1.7.1. We have for arbitrary numbers a1, . . . , an ∈ R :

max(a1, . . . , an) =
∑

∅6=T⊂{1,...,n}

(−1)|T |−1 min
i∈T

ai,

min(a1, . . . , an) =
∑

∅6=T⊂{1,...,n}

(−1)|T |−1 max
i∈T

ai.
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Corollary 1.7.1. If Z(1), Z(2) generate the same D-norm, then

E

(
min
1≤i≤d

(|xi|Z(1)
i )

)
= E

(
min
1≤i≤d

(|xi|Z(2)
i )

)
, x ∈ Rd.

Proof. Corollary 1.7.1 can be seen as follows:

E

(
min
1≤i≤d

(
|xi|Z(1)

i

))
= E

 ∑
∅6=T⊂{1,...,d}

(−1)|T |−1max
j∈T

(
|xi|Z(1)

j

)
=

∑
∅6=T⊂{1,...,d}

(−1)|T |−1E

(
max
j∈T

(
|xi|Z(1)

j

))

=
∑

∅6=T⊂{1,...,d}

(−1)|T |−1

∥∥∥∥∥∥
∑
j∈T

|xj| ej

∥∥∥∥∥∥
D

=
∑

∅6=T⊂{1,...,d}

(−1)|T |−1E

(
max
j∈T

(
|xi|Z(2)

j

))
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= E

 ∑
∅6=T⊂{1,...,d}

(−1)|T |−1max
j∈T

(
|xi|Z(2)

j

)
= E

(
min
1≤i≤d

(
|xi|Z(2)

i

))
.

Dual D-Norm Function

Let ‖·‖D be an arbitrary D-norm on Rd with arbitrary gener-
ator Z = (Z1, . . . , Zd). Put

oo x ooD := E

(
min

1≤i≤∈T
(|xi|Zi)

)
, x ∈ Rd,

which we call the dual D-norm function corresponding to
‖·‖D. It is independent of the particular generator Z, but
the mapping

‖·‖D → oo · ooD
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is not one-to-one. In particular we have that

oo · ooD = 0

is the least dual D-norm function, corresponding to ‖·‖D =
‖·‖1, and

oo x ooD = min
1≤i≤d

|xi| = oo x oo∞, x ∈ Rd,

is the largest dual D-norm function, corresponding to ‖·‖D =
‖·‖∞, i.e., we have for an arbitrary dual D-norm function the
bounds

0 = oo · oo1 ≤ oo · ooD ≤ oo · oo∞.

While the first inequality is obvious, the second one follows
from

|xk| = E(|xk|Zk) ≥ E

(
min
1≤i≤d

(|xi|Zi)
)
, 1 ≤ k ≤ d.
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The Exponent Measure Theorem

The following result is based on the characterization of a
max-infinite divisible df in Balkema and Resnick (1977). We,
therefore, call it Exponent Measure Theorem.

Put E := [0,∞) \ {0} ⊂ Rd and tB := {tb : b ∈ B} for an
arbitrary set B ⊂ E and t > 0.

Theorem 1.7.1 (Exponent Measure Theorem). Let ‖·‖D be an
arbitrary D-norm on Rd. Then

ν
(

[0,x]{ ∩E
)

:=

∥∥∥∥ 1

x

∥∥∥∥
D

, x ≥ 0, x 6= 0,

with the convention ‖1/x‖D =∞, if some component of x is zero,
defines a measure ν on E, which satisfies for each Borel subset B
of E

ν (tB) =
1

t
ν (B) , t > 0.
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Sketch of the proof. Let (Z1, . . . , Zd) be a generator of the D-norm
‖·‖D and put for x ∈ E and ∅ 6= T ⊂ {1, . . . , d}

ν(πi > xi, i ∈ T ) := E

(
min
i∈T

1

xi
Zi

)
,

with the convention 0/0 =∞, where πi(y) = yi denotes the projection
of y ∈ E onto its i-th component. Note that by Corollary 1.7.1 the
value of E (mini∈T Zi/xi) does not depend on the special choice of
the generator of ‖·‖D.

The function ν is defined on a family of subsets of E, which is ∩-
stable and which generates the Borel σ-field B(E) in E. In order to
extend it to a uniquely determined measure ν on B(E), it has to satisfy
ν((a, b]) ≥ 0 for a, b ∈ E, a ≤ b. This will be shown below.

From the well known inclusion exclusion principle we obtain for 0 <
a ≤ b the equation

ν((a, b]) = ν

(
(a,∞)\

d⋃
i=1

{πi > bi}

)
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= ν

(
(a,∞)\

d⋃
i=1

{πi > bi; πj > aj, j 6= i}

)

= ν ((a,∞))− ν

(
d⋃
i=1

{πi > bi; πj > aj, j 6= i}

)
= ν ((a,∞))

−
∑

∅6=T⊂{1,...,d}

(−1)|T |−1ν(πi > bi, i ∈ T ; πj > aj, j 6∈ T )

= E

(
min
1≤i≤d

1

ai
Zi

)
−

∑
∅6=T⊂{1,...,d}

(−1)|T |−1E

(
min

(
min
i∈T

1

bi
Zi, min

j 6∈T

1

aj
Zj

))
=

∑
T⊂{1,...,d}

(−1)|T |E

(
min

(
min
i∈T

1

bi
Zi, min

j 6∈T

1

aj
Zj

))
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=
∑

m∈{0,1}d
(−1)

∑
miE

(
min
1≤i≤d

(
Zi
bi

)mi
(
Zi
ai

)1−mi
)

= E

 ∑
m∈{0,1}d

(−1)
∑
mi min

1≤i≤d

(
Zi
bi

)mi
(
Zi
ai

)1−mi

 .

We claim that the integrand in the above expectation is nonnegative,
i.e., we claim that for Rd 3 0 ≤ x ≤ y∑

m∈{0,1}d
(−1)

∑
mi min

1≤i≤d

(
xmi
i y

1−mi
i

)
≥ 0. (1.11)

Let U be a rv which follows the uniform distribution on (0, 1), and
put U = (U, . . . , U) ∈ Rd. The df of U is

FU(u) := P (U ≤ u) = min
1≤i≤d

ui, u ∈ [0, 1]d.

We, thus, obtain for 0 ≤ u ≤ v ≤ 1 ∈ Rd by the well known inclusion
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exclusion principle

P (U ∈ (u,v]) =
∑

m∈{0,1}d
(−1)

∑
miFU

((
um1
1 v1−m1

1 , . . . , u
md
d v

1−md
d

))
=

∑
m∈{0,1}d

(−1)
∑
mi min

1≤i≤d

(
umi
i v

1−mi
i

)
≥ 0.

This implies inequality (1.11) by a proper scaling of x, y.
We have, moreover, ν (t (a, b]) = t−1ν ((a, b]) , t > 0. The equality

ν1(B) := ν(tB) = t−1ν(B) =: ν2(B), thus, holds on a generating
class closed under intersections and is, therefore, true for any Borel
subset B of E3.

Finally, we have for x > 0 ∈ Rd by the inclusion exclusion principle
and Lemma 1.7.1

ν
(

[0,x]{ ∩E
)

= ν

(
d⋃
i=1

{πi > xi}

)
3cf. Bauer (2001, p.32 Remarks)
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=
∑

∅6=T⊂{1,...,d}

(−1)|T |−1ν(πi > xi, i ∈ T )

=
∑

∅6=T⊂{1,...,d}

(−1)|T |−1E

(
min
i∈T

1

xi
Zi

)

= E

 ∑
∅6=T⊂{1,...,d}

(−1)|T |−1 min
i∈T

(
1

xi
Zi

)
= E

(
max
1≤i≤d

1

xi
Zi

)
=

∥∥∥∥ 1

x

∥∥∥∥
D

.
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Existence of Normed Generators

The proof of the following theorem is essentially the proof of
the de Haan-Resnick representation4 of a multivariate max-
stable df with unit Fréchet margins.

Theorem 1.7.2 (Normed Generators). Let ‖·‖ be an arbitrary
norm on Rd. For any D-norm ‖·‖D on Rd there exists a gener-
ator Z with the additional property ‖Z‖ = const. The distribution
of this generator is uniquely determined.

Corollary 1.7.2. For any D-norm on Rd there exist generators

Z(1), Z(2) with the property
∑d

i=1Z
(1)
i = d and max1≤i≤dZ

(2)
i =

const.

4de Haan and Resnick (1977)
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Proof. Choose ‖·‖ = ‖·‖1 in Theorem 1.7.2. Then

const =
∥∥∥Z(1)

∥∥∥
1

=

d∑
i=1

Z
(1)
i .

Taking expectations on both sides yields

const =

d∑
i=1

E
(
Z

(1)
i

)
= d.

Choose ‖·‖ = ‖·‖∞ for the second assertion.

Proof of Theorem 1.7.2. Let ‖·‖D be an arbitrary norm on Rd. From
the Exponent Measure Theorem 1.7.1 we know that

ν
(

[0,x]{ ∩E
)

:=

∥∥∥∥ 1

x

∥∥∥∥
D

, x ≥ 0 ∈ Rd, x 6= 0,

defines a measure ν on E with the property ν(tB) = t−1ν(B) for
each Borel subset B of E = [0,x) \{0} and each t > 0.

Denote by SE := {z ∈ E : ‖z‖ = 1} the unit sphere in E with
respect to the norm ‖·‖. From the equality ν(tB) = t−1ν(B) we
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obtain for t > 0 and any Borel subset A of SE

ν

({
x ∈ E : ‖x‖ ≥ t,

x

‖x‖
∈ A

})
= ν

({
ty ∈ E : ‖y‖ ≥ 1,

y

‖y‖
∈ A

})
= ν

(
t

{
y ∈ E : ‖y‖ ≥ 1,

y

‖y‖
∈ A

})
=

1

t
ν

({
y ∈ E : ‖y‖ ≥ 1,

y

‖y‖
∈ A

})
=:

1

t
Φ(A) (1.12)

where Φ(·) is the angular measure on SE corresponding to ‖·‖.
Define the one-to-one function T : E → [0,∞)× SE by

T (x) =

(
‖x‖ , x

‖x‖

)
,

which is the transformation of a vector x on to its polar coordinates
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with respect to the norm ‖·‖.
From (1.12) we obtain that the measure (ν ∗ T )(B) := ν(T−1(B)),

induced by ν and T , satisfies

(ν ∗ T ) ((t,∞)× A) = ν ({x ∈ E : T (x) ∈ (t,∞)× A})

= ν

({
x ∈ E : ‖x‖ > t,

x

‖x‖
∈ A

})
=

1

t
Φ(A)

=

∫
A

∫
(t,∞)

1

r2
dr dΦ

=

∫
(t,∞)×A

1

r2
dr dΦ

and, hence,

(ν ∗ T ) (B) =

∫
B

r−2 dr dΦ. (1.13)
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We have

ν
(

[0,x]{
)

= ν
(
T−1

(
T
(

[0,x]{
)))

= (ν ∗ T )
(
T
(

[0,x]{
))

with

T
(

[0,x]{
)

= T ({y ∈ E : yi > xi for some i ≤ d})
= {(r,a) ∈ (0,∞)× SE : rai > xi for some i ≤ d}

=

{
(r,a) ∈ (0,∞)× SE : r > min

1≤i≤d

(
xi
ai

)}
with the temporary convention 0/0 = ∞. Hence, we obtain from
equation (1.13)∥∥∥∥ 1

x

∥∥∥∥
D

= ν
(

[0,x]{
)

= (ν ∗ T )
(
T
(

[0,x]{
))

= (ν ∗ T )

({
(r, a) ∈ (0,∞)× SE : r > min

1≤i≤d

xi
ai

})
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=

∫{
(r,a)∈(0,∞)×SE: r> min

1≤i≤d
xi
ai

} s−2 ds dΦ

=

∫
SE

∫ ∞
min
1≤i≤d

xi
ai

s−2 dsΦ(da)

=

∫
SE

1

min
1≤i≤d

xi
ai

Φ(da)

=

∫
SE

max
1≤i≤d

ai
xi

Φ(da)

now with the convention 0/0 = 0 in the bottom line.
Note that Φ is a finite measure as can be seen as follows. Choose in

the preceding equation xi = 1 and let xj → ∞ for j 6= i. Then, by
the fact that ‖ei‖D = 1, 1 ≤ i ≤ d, we obtain

1 =

∫
SE

ai Φ(da), 1 ≤ i ≤ d. (1.14)

The finiteness of Φ now follows from the fact, that all norms on Rd
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are equivalent:

d =

∫
SE

d∑
i=1

ai Φ(da)

=

∫
SE

‖a‖1 Φ(da)

≥ const

∫
SE

‖a‖︸︷︷︸
=1

Φ(da)

= const Φ(SE),

i.e., Φ(SE) <∞.
Put

m := Φ(SE) ∈ (0,∞)

Then

Q (·) :=
Φ (·)
m

defines a probability measure on SE.
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Let the rv X = (X1, . . . Xd) ∈ SE follow this probability measure,
i.e. P (X ∈ ·) = Q (·). Then we have for Z := mX

‖Z‖ = ‖mX‖ = m ‖X‖ = m a.s.

as well as

Z ≥ 0,

and

E(Zi) = E(mXi)

= mE(Xi)

= m

∫
SE

ai (P ∗X) (dx)

= m

∫
SE

aiQ(da)

= m

∫
SE

ai
Φ(da)

m
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= m
1

m

∫
SE

ai Φ(da)

= 1.

by (1.14). Finally, we have

E

(
max
1≤i≤d

Zi
xi

)
= E

(
m max

1≤i≤d

Xi

xi

)
=

∫
SE

m max
1≤i≤d

ai
xi

(P ∗ (X1, . . . , Xd)) (da)

=

∫
SE

m max
1≤i≤d

ai
xi
Q(da)

= m

∫
SE

max
1≤i≤d

ai
xi

Φ(da)

m

=

∫
SE

max
1≤i≤d

ai
xi

Φ(da)

=

∥∥∥∥ 1

x

∥∥∥∥
D

.
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Example 1.7.1. Put Z(1) := (1, . . . , 1) and Z(2) := (X, . . . , X),
where X ≥ 0 is a rv with E(X) = 1. Both generate the D-norm
‖·‖∞, but only Z(1) satisfies

∥∥Z(1)
∥∥
1

= d.

Example 1.7.2. Let V1, . . . , Vd be independent and identically
gamma distributed rv with density γα(x) := xα−1 exp(−x)/Γ(α),
x > 0, α > 0. Then the rv Z̃ ∈ Rd with components

Z̃i :=
Vi

V1 + · · · + Vd
, i = 1, . . . , d,

follows a symmetric Dirichlet distribution Dir(α) on the closed sim-

plex S̃d = {u ≥ 0 ∈ Rd :
∑d

i=1 ui = 1}, see Ng et al. (2011,
Theorem 2.1). We obviously have E(Z̃i) = 1/d and, thus,

Z := dZ̃ (1.15)
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is a generator of aD-norm ‖·‖D(α) on Rd, which we call the Dirichlet
D-norm with parameter α. We have in particular ‖Z‖1 = d.

It is well-known that for a general α > 0 the rv
(
Vi/
∑d

j=1 Vj

)d
i=1

and the sum
∑d

j=1 Vj are independent, see, e.g., the proof of The-
orem 2.1 in Ng et al. (2011). As E(V1 + · · ·+Vd) = dα, we obtain
for x = (x1, . . . , xd) ∈ Rd

‖x‖D(α) = E

(
max
1≤i≤d

(|xi|Zi)
)

= dE

(
max1≤i≤d (|xi|Vi)
V1 + · · · + Vd

)
=

1

α
E(V1 + · · · + Vd)E

(
max1≤i≤d (|xi|Vi)
V1 + · · · + Vd

)
=

1

α
E

(
max
1≤i≤d

(|xi|Vi)
)
.
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A generator of ‖·‖D(α) is, therefore, also given by α−1(V1, . . . , Vd).

1.8 Metrization of the Space of D-Norms

Metrization of the Space of D-Norms

Denote by Z‖·‖D the set of all generators of a given D-norm
‖·‖D on Rd. Theorem 1.7.2 implies the following result.

Lemma 1.8.1. Each set Z‖·‖D contains a generator Z with the ad-
ditional property ‖Z‖1 = d. The distribution of this Z is uniquely
determined.

Let P be the set of all probability measures on Sd := {x ≥
0 ∈ Rd : ‖x‖1 = d}. By the preceding lemma we can identify
the set D of D-norms on Rd with the subset PD of those
probability distributions P ∈ P which satisfy the additional
condition

∫
Sd
xi P (dx) = 1, i = 1, . . . , d.
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Denote by dW (P,Q) the Wasserstein metric between two
probability distributions on Sd, i.e.,

dW (P,Q)

:= inf {E (‖X − Y ‖1) : X has distribution P, Y has distribution Q} .
As Sd, equipped with an arbitrary norm ‖·‖, is a complete
separable space, the metric space (P, dW ) is complete and
separable as well; see, e.g., Bolley (2008).

Lemma 1.8.2. The subspace (PD, dW ) of (P, dW ) is also separable
and complete.

Proof. Let Pn, n ∈ N, be a sequence in PD, which converges with
respect to dW to P ∈ P. We show that P ∈ PD. Let the rv X have
distribution P and let X(n) have distribution Pn, n ∈ N. Then we
have

d∑
i=1

∣∣∣∣∫
Sd

xi P (dx)− 1

∣∣∣∣ =

d∑
i=1

∣∣∣∣∫
Sd

xi P (dx)−
∫
Sd

xi Pn(dx)

∣∣∣∣
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=

d∑
i=1

∣∣∣E (Xi −X(n)
i

)∣∣∣
≤ E

(
d∑
i=1

∣∣∣Xi −X(n)
i

∣∣∣)
= E

(∥∥∥X −X(n)
∥∥∥
1

)
, n ∈ N.

As a consequence we obtain

d∑
i=1

∣∣∣∣∫
Sd

xi P (dx)− 1

∣∣∣∣ ≤ dW (P, Pn)→n→∞ 0,

and, thus, P ∈ PD. The separability of PD can be seen as follows.
Let P be a countable and dense subset of P. Identify each distribution
P in P with a rv Y on Sd that follows this distribution P . Put
Z = Y /E(Y ), where we can assume that each component of Y has
positive expectation. This yields a countable subset of PD, which is
dense.
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We can now define the distance between two D-norms
‖·‖D1

, ‖·‖D2
on Rd by

dW

(
‖·‖D1

, ‖·‖D2

)
:= inf

{
E
(∥∥∥Z(1) −Z(2)

∥∥∥
1

)
:

Z(i) generates ‖·‖Di ,
∥∥∥Z(i)

∥∥∥
1

= d, i = 1, 2
}
.

The space D of D-norms on Rd, equipped with the distance
dW , is by Lemma 1.8.2 a complete and separable metric
space.

Convergence of D-Norms and Weak Convergence of
Generators

For the rest of this section we restrict ourselves to generators
Z of D-norms on Rd that satisfy ‖Z‖1 = d.
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Proposition 1.8.1. Let ‖·‖Dn, n ∈ N ∪ {0}, be a sequence of

D-norms on Rd with corresponding generators Z(n), n ∈ N∪ {0}.
Then we have the equivalence

dW

(
‖·‖Dn , ‖·‖D0

)
→n→∞ 0 ⇐⇒ Z(n) →D Z

(0),

where →D denotes ordinary convergence in distribution.

Proof. Convergence of probability measures Pn to P0 with respect to
the Wasserstein-metric is equivalent with weak convergence together
with convergence of the moments∫

Sd

‖x‖1 Pn(dx)→n→∞

∫
Sd

‖x‖1 P0(dx),

see, e.g., Villani (2009). But as we have for each probability measure
P ∈ PD ∫

Sd

‖x‖1 P (dx) =

∫
Sd

dP (dx) = d,
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convergence of the moments is automatically satisfied.

Lemma 1.8.3. We have for arbitrary D-norms ‖·‖D1
, ‖·‖D2

on Rd

the bound

‖x‖D1
≤ ‖x‖D2

+ ‖x‖∞ dW
(
‖·‖D1

, ‖·‖D2

)
and, thus,

sup
x∈Rd,‖x‖∞≤r

∣∣∣‖x‖D1
− ‖x‖D2

∣∣∣ ≤ r dW

(
‖·‖D1

, ‖·‖D2

)
, r ≥ 0.

Proof. Let Z(i) be a generator of ‖·‖Di, i = 1, 2. We have

‖x‖D1
= E

(
max
1≤i≤d

(
|xi|Z(1)

i

))
= E

(
max
1≤i≤d

(
|xi|
(
Z

(2)
i + Z

(1)
i − Z

(2)
i

)))
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≤ E

(
max
1≤i≤d

(
|xi|Z(2)

i

))
+ ‖x‖∞E

(
max
1≤i≤d

∣∣∣Z(1)
i − Z

(2)
i

∣∣∣)
≤ ‖x‖D2

+ ‖x‖∞E
(∥∥∥Z(1) −Z(2)

∥∥∥
1

)
,

which implies the assertion.
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Chapter 2

Multivariate Generalized Pareto and Max Stable
Distributions

2.1 Multivariate Simple Generalized Pareto Distributions

Multivariate Simple Generalized Pareto Distributions

Let Z = (Z1, . . . , Zd) be a generator of a D-norm ‖·‖D with
the additional property

Zi ≤ c, 1 ≤ i ≤ d, (2.1)

for some constant c ≥ 1, see Corollary 1.7.2. Let U be a rv
that is uniformly distributed on (0, 1) and which is independet

69



of Z.
Put

V = (V1, . . . , Vd) :=
1

U
(Z1, . . . , Zd) =:

1

U
Z.

Note that for x > 1

P

(
1

U
≤ x

)
= P

(
1

x
≤ U

)
= 1− 1

x
,

i.e., 1/U follows a standard Pareto distribution (with param-
eter 1).

We have, moreover, for x > c and 1 ≤ i ≤ d by Fubini’s
theorem

P

(
1

U
Zi ≤ x

)
= P

(
Zi
x
≤ U

)
= E

(
1

(
Zi
x
≤ U

))
=

∫
[0,1]×[0,c]

1
(z
x
≤ u

)
(P ∗ (U,Zi))d(u, z)
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=

∫
[0,1]×[0,c]

1
(z
x
≤ u

)
((P ∗ U)× (P ∗ Zi))d(u, z)

=

∫ c

0

∫ 1

0

1
(z
x
≤ u

)
(P ∗ U)du (P ∗ Zi)dz

=

∫ c

0

P
(z
x
≤ U

)
(P ∗ Zi) dz

=

∫ c

0

1− z

x
(P ∗ Zi) dz

= 1− 1

x

∫ c

0

z (P ∗ Zi) dz

= 1− 1

x
E (Zi)

= 1− 1

x
, (2.2)

where P ∗ X denotes the distribution of a rv X, and P ∗
(X, Y ) = (P ∗X)× (P ∗ Y ) if the rv X, Y are independent.

The product Zi/U , therefore, follows in its upper tail a
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standard Pareto distribution. The special case Zi = 1 yields
the standard Pareto distribution everywhere. We call the
distribution of V = Z/U a d-variate (simple) generalized
Pareto distribution (simple GPD).

The Distribution Function of a GPD

By repeating the arguments in equation (2.2) we obtain for
x ≥ (c, . . . , c) = c

P (V ≤ x) = P

(
Zi
U
≤ xi, 1 ≤ i ≤ d

)
(2.3)

= P

(
Zi
xi
≤ U, 1 ≤ i ≤ d

)
=

∫
[0,c]d

P

(
U ≥ zi

xi
, 1 ≤ i ≤ d

)
(P ∗Z)d(z1, . . . , zd)

=

∫
[0,c]d

P

(
U ≥ max

1≤i≤d

zi
xi

)
(P ∗Z)d(z1, . . . , zd)
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=

∫
[0,c]d

1− max
1≤i≤d

zi
xi

(P ∗Z)d(z1, . . . , zd)

= 1−
∫
[0,c]d

max
1≤i≤d

zi
xi

(P ∗Z)d(z1, . . . , zd)

= 1− E
(

max
1≤i≤d

Zi
xi

)
= 1−

∥∥∥∥ 1

x

∥∥∥∥
D

,

i.e., the (multivariate) distribution function (df) of V is in
its upper tail given by 1− ‖1/x‖D.

The Survival Function of a GPD

By repeating the arguments in the derivation of equation
(2.3) again, we obtain for x ≥ c
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P (V ≥ x) = P

(
U ≤ zi

xi
, 1 ≤ i ≤ d

)
=

∫
[0,c]d

P

(
U ≤ zi

xi
, 1 ≤ i ≤ d

)
(P ∗Z)d(z1, . . . , zd)

=

∫
[0,c]d

P

(
U ≤ min

1≤i≤d

zi
xi

)
(P ∗Z)d(z1, . . . , zd)

=

∫
[0,c]d

min
1≤i≤d

zi
xi

(P ∗Z)d(z1, . . . , zd)

= E

(
min
1≤i≤d

Zi
xi

)
= oo 1/x ooD. (2.4)

An Application to Risk Assessment

Suppose that the joint random losses of a portfolio consisting
of d assets are modelled by the rv V .
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The probability that the d losses jointly exceed the vector
x > c is by equation (2.4) given by

P (V ≥ x) = E

(
min
1≤i≤d

Zi
xi

)
.

If we suppose that ‖·‖D = ‖·‖∞, then we can choose the
constant function Z = (1, . . . 1) as a generator and, thus,

P (V ≥ x) = min
1≤i≤d

1

xi
=

1

max
1≤i≤d

xi
, x ≥ (1, . . . , 1).

If we suppose that ‖·‖D = ‖·‖1, then we can choose the
random permutation of (d, 0, . . . , 0) with equal probability 1/d
as a generator Z. in this case we have min

1≤i≤d
Zi = 0 and, thus,

P (V ≥ x) = E

(
min
1≤i≤d

Zi
xi

)
= 0, x ≥ (d, . . . , d).

This example shows that assessing the risk of a portfolio is
highly sensitive to the choice of the stochastic model: For
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x = (d, . . . , d) and ‖·‖D = ‖·‖∞, the probability for the losses
jointly exceeding the value d is 1/d, whereas for ‖·‖D = ‖·‖1
it is zero!

Risk assessment has, consequently, become a major appli-
cation of extreme value analysis in recent years.

2.2 Multivariate Max-Stable Distributions

Introducing Multivariate Max-Stable Distributions

Let now V (1) = (V
(1)
1 , . . . , V

(1)
d ), V (2) = (V

(2)
1 , . . . , V

(2)
d ), . . . be

independent copies of the rv V = Z/U . Then we obtain for
the vector of the componentwise maxima

max
1≤i≤n

V (i) :=

(
max
1≤i≤n

V
(i)
1 , max

1≤i≤n
V

(i)
2 , . . . , max

1≤i≤n
V

(i)
d

)
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from equation (2.3) for x > 0 and n large such that nx > c

P

(
1

n
max
1≤i≤n

V (i) ≤ x
)

(2.5)

= P

(
max
1≤i≤n

V (i) ≤ nx

)
= P

(
V (i) ≤ nx, 1 ≤ i ≤ n

)
=

n∏
i=1

P
(
V (i) ≤ nx

)
= P (V ≤ nx)n

=

(
1−

∥∥∥∥ 1

nx

∥∥∥∥
D

)n
=

(
1− 1

n

∥∥∥∥ 1

x

∥∥∥∥
D

)n
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=

(
1−

∥∥ 1
x

∥∥
D

n

)n

−−−→
n→∞

exp

(
−
∥∥∥∥ 1

x

∥∥∥∥
D

)
=: G(x), x > 0 ∈ Rd,

where 1/x is meant componentwise, i.e., 1/x = (1/x1, . . . , 1/xd).

Suppose that at least one component of x is equal to zero,
say component i0. Then

P (V ≤ nx) ≤ P (Vi0 ≤ nxi0)

= P

(
Zi0
U
≤ 0

)
= P (Zi0 ≤ 0)

= P (Zi0 = 0) < 1

by the fact that E(Zi0) = 1. As a consequence we obtain in
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this case

P

(
1

n
max
1≤i≤n

V (i) ≤ x
)

=P (V ≤ nx)n

≤P (Zi0 = 0)n −−−→
n→∞

0

We, thus, have

P

(
1

n
max
1≤i≤n

V (i) ≤ x
)
−−−→
n→∞

G(x), x ∈ Rd,

where

G(x) =

{
exp
(
−
∥∥ 1
x

∥∥
D

)
, if x > 0,

0 elsewhere.

As P (n−1 max
1≤i≤n

V (i) ≤ ·), n ∈ N, is a sequence of df on Rd, it is

easy to check that its limit G(·) is a df itself1. It is obvious
that the df G satisfies

Gn(nx) = exp

(
−
∥∥∥∥ 1

nx

∥∥∥∥
D

)n
= exp

(
−
∥∥∥∥ 1

x

∥∥∥∥
D

)
= G(x),

1Falk et al. (2011, Section 4.1)
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i.e.,

Gn(nx) = G(x), x ∈ Rd, n ∈ N,

which is the so called max-stability of G:

Let the rv ξ ∈ Rd have df G and let ξ(1), ξ(2), . . . be in-
dependent copies of ξ. Then we have for the vector of
componentwise maxima

P

(
1

n
max
1≤i≤n

ξ(i) ≤ x
)

= P

(
max
1≤i≤n

ξ(i) ≤ nx

)
= P

(
ξ(i) ≤ nx, 1 ≤ i ≤ n

)
= P (ξ ≤ nx)n

= Gn(nx)

= G(x), x ∈ Rd,

which explains the name max-stability.
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The Simple Multivariate Max-Stable Distribution

By keeping xi > 0 fixed and letting xj tend to infinity for
j 6= i, we obtain the marginal distribution of G:

Gi(xi) :=P (ξi ≤ xi)

= lim
xj→∞
j 6=i

P (ξi ≤ xi, ξj ≤ xj, j 6= i)

= lim
xj→∞
j 6=i

G(x)

= lim
xj→∞
j 6=i

exp

(
−
∥∥∥∥ 1

x

∥∥∥∥
D

)
= lim

xj→∞
j 6=i

exp

(
−
∥∥∥∥( 1

x1
, . . . ,

1

xi
, . . . ,

1

xd

)∥∥∥∥
D

)
= exp

(
−
∥∥∥∥(0, . . . , 0,

1

xi
, 0, . . . , 0

)∥∥∥∥
D

)
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= exp

(
−E

(
1

xi
Zi

))
= exp

(
− 1

xi

)
.

Each univariate marginal df of G is, consequently,

GF1(x) := exp

(
−1

x

)
, x > 0,

which is the Fréchet df with parameter 1, or unit Fréchet df
for short.

We call the multivariate df G with unit Fréchet margins
multivariate simple max-stable.
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The Standard Multivariate Max-Stable Distribution

Let the rv ξ ∈ Rd follow a multivariate simple max-stable df,
i.e., P (ξ ≤ x) = exp (−‖1/x‖D) , x > 0. Put

η = −1

ξ
= −

(
1

ξ1
, ...,

1

ξd

)
and note that P (ξi = 0) = 0, 1 ≤ i ≤ d. Then we obtain for
x ≤ 0 ∈ Rd

P (η ≤ x) = P

(
− 1

ξi
≤ xi, 1 ≤ i ≤ d

)
= P

(
− 1

xi
≥ ξi, 1 ≤ i ≤ d

)
= P

(
ξ ≤ − 1

x

)
= exp(−‖x‖D)

=: GD(x).
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By putting for x ∈ Rd

GD(x) := exp (−‖(min(x1, 0), . . . ,min(xd, 0))‖D) ,

we obtain a df on Rd, which is max-stable as well:

Gn
D

(x
n

)
= GD (x) , x ∈ Rd, n ∈ N.

Gn
D (·/n) is the df of nmax1≤i≤n η

(i), where η(1), η(2), . . . are
independent copies of η.

Note that each univariate margin of GD is the standard
negative exponential df:

P (ηi ≤ x) =P (η ≤ xei)

= exp (−‖xei‖D)

= exp (− |x| ‖ei‖D)

= exp(x), x ≤ 0.

We call GD multivariate standard max-stable (SMS).
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Takahashi revisited

Let the rv η = (η1, . . . , ηd) have in what follows the SMS df

P (η ≤ x) = G(x) = exp (−‖x‖D) , x ≤ 0 ∈ Rd,

with an arbitrary D-norm ‖·‖D on Rd. Theorem 1.3.1 can
now be formulated as follows.

Theorem 2.2.1. With η as above we have the equivalences

(i) η1, . . . , ηd are independent

⇐⇒ ∃y < 0 ∈ Rd : P (ηi ≤ yi, 1 ≤ i ≤ d) =

d∏
i=1

P (ηi ≤ yi).

(ii) η1 = η2 = · · · = ηd a.s.

⇐⇒ P (η1 ≤ −1, η2 ≤ −1, . . . , ηd ≤ −1) = 1.

Proof. The assumption η1, . . . , ηd are independent is equivalent with
the condition ‖·‖D = ‖·‖1. The assumption η1 = η2 = · · · = ηd a.s. is
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equivalent with the condition ‖·‖d = ‖·‖∞. The assertion is, therefore,
an immediate consequence of Theorem 1.3.1.

The following characterization is an immediate consequence
of Theorem 1.3.3. Note that for arbitrary 1 ≤ i < j ≤ d

P (ηi ≤ −1, ηj ≤ −1) = P (ηi ≤ −1, ηj ≤ −1, ηk ≤ 0, k 6∈ {i, j})
= exp

(
−‖ei + ej‖D

)
.

Part (ii) is, obviously, trivial. We list it for the sake of com-
pleteness.

Theorem 2.2.2. With η as above we have the equivalences

(i) η1, . . . , ηd are independent ⇐⇒ η1, . . . , ηd are pairwise inde-
pendent.

(ii) η1 = η2 = · · · = ηd a.s. ⇐⇒ η1, . . . , ηd are pairwise com-
pletely dependent.
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The distribution of an arbitrary d-variate max-stable rv can
be obtained by means of η as above together with a proper
non random transformation of each component ηi, 1 ≤ i ≤ d,
see, e.g., Falk et al. (2011, equation (5.47)). The preced-
ing characterizations, therefore, carry over to an arbitrary
multivariate max-stable rv (see (4.4)).

2.3 Standard Multivariate Generalized Pareto Distribution

Standard Multivariate Generalized Pareto Distribu-
tion

Choose K < 0 and put

W := (W1, . . . ,Wd)

:=

(
max

(
−U
Z1
, K

)
, . . . ,max

(
−U
Zd
, K

))
,
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where U is uniformly distributed on (0, 1) and independent
of the generator Z of the D-norm ‖·‖D, which is bounded
by c ≥ 1. The additional constant K avoids division by zero.
Repeating the arguments in equation (2.3) we obtain

P (W ≤ x) = 1− ‖x‖D , x0 ≤ x ≤ 0 ∈ Rd,

where x0 < 0 ∈ Rd depends on K and c.
Repeating the arguments in equation (2.5) one obtains

P (nmax
1≤i≤n

W (i) ≤ x) −−−→
n→∞

exp(−‖x‖D), x ≤ 0 ∈ Rd,

where W (1),W (2), . . . are independent copies of W .
We call a df H on Rd a standard GPD, if there exists x0 <

0 ∈ Rd such that

H(x) = 1− ‖x‖D , x0 ≤ x ≤ 0 ∈ Rd.

Note that the i-th marginal df Hi of H is given by

Hi(x) = 1−‖xei‖D = 1−|x| ‖ei‖D = 1+x, x0i ≤ x ≤ 0, 1 ≤ i ≤ d,

which coincides on [x0i, 0] with the uniform df on [−1, 0].
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2.4 Max-Stable Random Vectors as Generators of D-Norms

Max-Stable Random Vectors as Generators of D-Norms

Let the rv η = (η1, . . . , ηd) follow the SMS df

G(x) = P (η ≤ x) = exp(−‖x‖D), x ≤ 0 ∈ Rd.

Choose c ∈ (0, 1). Then the rv 1/ |ηi|c has the df

P

(
1

|ηi|c
≤ x

)
= P

(
1

x
≤ |ηi|c

)
= P

(
1

x1/c
≤ −ηi

)
= P

(
− 1

x1/c
≥ ηi

)
= exp

(
− 1

x1/c

)
, x > 0, 1 ≤ i ≤ d,

i.e. 1/ |ηi|c follows the Fréchet df Fα(x) = exp(−x−α), x > 0,
with parameter α = 1/c; note that P (ηi = 0) = 0.
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Its expectation is

E

(
1

|ηi|c
)

=

∫ ∞
0

x exp(−x−α)x−α−1α dx (2.6)

= α

∫ ∞
0

x−α exp(−x−α)dx

=

∫ ∞
0

x−
1
α exp(−x)dx

=

∫ ∞
0

x(1−
1
α)−1 exp(−x)dx

= Γ

(
1− 1

α

)
= Γ(1− c) =: µc

The rv

Z = (Z1, . . . , Zd) :=
1

µc

(
1

|η1|c
, . . . ,

1

|ηd|c
)

(2.7)

now satisfies Zi ≥ 0 and E(Zi) = 1, 1 ≤ i ≤ d, i.e., Z is the
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generator of a D-norm. Can we specify it?
Note that the rv (1/ |η1|c , . . . , 1/ |ηd|c) follows a max-stable

df with Fréchet-margins:

H(x) =P

(
1

|ηi|c
≤ xi, 1 ≤ i ≤ d

)
=P

(
ηi ≤ −

1

x
1/c
i

, 1 ≤ i ≤ d

)

= exp

(
−

∥∥∥∥∥
(

1

x
1/c
1

, . . . ,
1

x
1/c
d

)∥∥∥∥∥
D

)
, x > 0 ∈ Rd,

and for each n ∈ N:

Hn (ncx) = exp

(
−

∥∥∥∥∥ 1

(ncx1)
1/c
, . . . ,

1

(ncxd)
1/c

∥∥∥∥∥
D

)n

= exp

(
−n
n

∥∥∥∥∥
(

1

x
1/c
1

, . . . ,
1

x
1/c
d

)∥∥∥∥∥
D

)
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= H(x), x > 0 ∈ Rd.

Now we can specify the D-norm, which is generated by
Z = µ−1c (1/ |η1|c , . . . , 1/ |ηd|c).

Proposition 2.4.1. The D-norm corresponding to the generator
Z defined in (2.7) is given by

E

(
max
1≤i≤d

(xiZi)

)
=
∥∥∥(x1/c1 , . . . , x

1/c
d

)∥∥∥c
D
, x ≥ 0 ∈ Rd.

(2.8)

If η1, . . . ηd in the preceding result are independent, i.e., if
the corresponding D-norm is ‖·‖1, then Proposition 2.4.1 im-
plies that Z = µ−1c (1/ |η1|c , . . . , 1/ |ηd|c) generates the logistic

norm ‖x‖1/c =
(∑d

i=1 |xi|
1/c
)c

. This was already observed in

Proposition 1.2.1.
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Proof. Recall that by Fubini’s theorem

E(Y ) =

∫ ∞
0

P (Y > t) dt,

if Y is an integrable rv with Y ≥ 0 a.s. We, consequently, obtain for
x > 0 ∈ Rd

E

(
max
1≤i≤d

(xiZi)

)
=

1

µc
E

(
max
1≤i≤d

(
xi
|ηi|c

))
=

1

µc

∫ ∞
0

P

(
max
1≤i≤d

(
xi
|ηi|c

)
≥ t

)
dt

=
1

µc

∫ ∞
0

1− P
(

max
1≤i≤d

(
xi
|ηi|c

)
≤ t

)
dt

=
1

µc

∫ ∞
0

1− P
(
xi
|ηi|c
≤ t, 1 ≤ i ≤ d

)
dt

=
1

µc

∫ ∞
0

1− P
(

1

|ηi|c
≤ t

xi
, 1 ≤ i ≤ d

)
dt

93



=
1

µc

∫ ∞
0

1− exp

(
−
∥∥∥∥ 1

(t/x1)1/c
, . . . ,

1

(t/xd)1/c

∥∥∥∥
D

)
dt

=
1

µc

∫ ∞
0

1− exp

(
−1

t1/c

∥∥∥(x
1/c
1 , . . . , x

1/c
d )
∥∥∥
D

)
dt

=
1

µc

∥∥∥(x
1/c
1 , . . . , x

1/c
d )
∥∥∥c
D

∫ ∞
0

1− exp

(
− 1

t1/c

)
dt

by the substitution t 7→
∥∥∥(x

1/c
1 , . . . , x

1/c
d )
∥∥∥c
D
t.

The integral
∫∞
0 1 − exp

(
−1/t1/c

)
dt equals by Fubini’s theorem

E(Y ), where Y follows a Fréchet distribution with parameter 1/c. It
was shown in (2.6) that E(Y ) = µc, which completes the proof.
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Iterating the Sequence of Generators

Taking this new D-norm in (2.8) as the initial D-norm and
proceeding as before leads to the D-norm

‖(x1, . . . , xd)‖D(2) :=
∥∥∥(x1/c21 , . . . , x

1/c2

d

)∥∥∥c2
D
, x ≥ 0 ∈ Rd.

We can iterate this problem and obtain in the n-th step

‖(x1, . . . , xd)‖D(n) :=
∥∥∥(x1/cn1 , . . . , x

1/cn

d

)∥∥∥cn
D
, x ≥ 0 ∈ Rd.

The question suggests itself: Does this sequence of D-
norms converge?

Note: If we choose ‖·‖D = ‖·‖∞, then we obtain for x ≥
0 ∈ Rd∥∥∥(x1/c1 , . . . , x

1/c
d

)∥∥∥c
D

=

(
max
1≤i≤d

x
1/c
i

)c
= max

1≤i≤d
xi = ‖(x1, . . . , xd)‖∞ .

The conjecture might, therefore, occur that the sequence of
D-norms converges to the sup-norm ‖·‖∞, if it converges.
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Recall that ‖·‖∞ ≤ ‖·‖D ≤ ‖·‖1 for an arbitrary D-norm and
that c ∈ (0, 1). Consequently, we obtain

‖(x1, . . . , xd)‖D(n) =
∥∥∥(x1/cn1 , . . . , x

1/cn

d

)∥∥∥cn
D

≤
∥∥∥(x

1/cn

1 , . . . , x
1/cn

d )
∥∥∥cn
1

=

(
d∑
i=1

x
1/cn

i

)cn

−−−→
n→∞

‖(x1, . . . xd)‖∞ , x ≥ 0 ∈ Rd,

by Lemma 1.1.1 and, hence,

‖(x1, . . . , xd)‖D(n) −−−→
n→∞

‖(x1, . . . xd)‖∞ .
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Chapter 3

The Functional D-Norm

3.1 Introduction

Some Basic Definitions

By C [0, 1] := {g : [0, 1]→ R, g is continuous} we denote the
set of continuous functions from the interval [0, 1] to the real
line. By E [0, 1] we denote the set of those bounded functions
f : [0, 1] → R with only a finite number of discontinuities.
Note that E [0, 1] is a linear space: If f1, f2 ∈ E [0, 1] and
x1, x2 ∈ R, then x1f1 + x2f2 ∈ E [0, 1] as well.
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Let now Z = (Zt)t∈[0,1] be a stochastic process on [0, 1], i.e.,
Zt is a rv for each t ∈ [0, 1]. We require that each sample
path of (Zt)t∈[0,1] is a continuous function on [0, 1], Z ∈ C [0, 1],
for short. We also require that

Zt ≥ 0, E(Zt) = 1, t ∈ [0, 1] ,

and

E

(
sup
0≤t≤1

Zt

)
<∞.

Then

‖f‖D := E

(
sup
0≤t≤1

(|f (t)|Zt)
)
, f ∈ E [0, 1] ,

defines a norm on E [0, 1]: We, obviously, have ‖f‖D ≥ 0 and

‖f‖D = E

(
sup
0≤t≤1

(|f (t)|Zt)
)
≤ E

((
sup
t∈[0,1]

|f (t)|

)(
sup
t∈[0,1]

Zt

))
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=

(
sup
t∈[0,1]

|f (t)|

)
E

(
sup
t∈[0,1]

Zt

)
<∞.

Let ‖f‖D = 0. We want to show that f = 0. Suppose that
there exists t0 ∈ [0, 1] with f (t0) 6= 0, then

0 = ‖f‖D

= E

(
sup
t∈[0,1]

(|f (t)|Zt)

)
≥ E(|f (t0)|Zt0)
= |f (t0)|E(Zt0)

= |f (t0)| > 0,

which is a clear contradiction. We, thus, have established
the implication

‖f‖D = 0 =⇒ f = 0.

The reverse implication is obvious. Homogeneity is obvious
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as well: We have for f ∈ E[0, 1] and λ ∈ R

‖λf‖D = E

(
sup
0≤t≤1

(|λf (t)|Zt)
)

= E

(
|λ| sup

0≤t≤1
(|f (t)|Zt)

)
= |λ|E

(
sup
0≤t≤1

(|f (t)|Zt)
)

= |λ| ‖f‖D .

The triangle inequality for ‖·‖D follows from the triangle in-
equality for real numbers |x + y| ≤ |x| + |y|, x, y ∈ R:

‖f1 + f2‖D = E

(
sup
0≤t≤1

(|f1 + f2|Zt)
)

≤ E

(
sup
0≤t≤1

(|f1|Zt + |f2|Zt)
)
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≤ E

(
sup
0≤t≤1

(|f1|Zt) + sup
0≤t≤1

(|f2|Zt)
)

= E

(
sup
0≤t≤1

(|f1|Zt)
)

+ E

(
sup
0≤t≤1

(|f2|Zt)
)

= ‖f1‖D + ‖f2‖D , f1, f2 ∈ E [0, 1] .

Measurability of Integrand

Note that (f (t)Zt)t∈[0,1] is for each f ∈ E [0, 1] a stochastic
process whose sample paths have only a finite number of dis-
continuities, namely those of the function f . We, therefore,
can find a sequence of increasing index sets Tn = {t1, . . . tn},
n ∈ N, such that

sup
t∈[0,1]

(|f (t)|Zt) = lim
n→∞

(
max
1≤i≤n

(|f (ti)|Zti)
)
.
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As max
1≤i≤n

(|f (ti)|Zti) is for each n ∈ N a rv, the limit of this

sequence, i.e., sup
t∈[0,1]

(|f (t)|Zt), is a rv as well. We, therefore,

can compute its expectation, which is finite by the bound

sup
t∈[0,1]

(|f (t)|Zt) =: ‖fZ‖∞

≤ sup
t∈[0,1]

(|f (t)|) sup
t∈[0,1]

Zt

= ‖f‖∞ ‖Z‖∞

and taking expectations. Recall that each function f ∈ E[0, 1]
is by the definition of E[0, 1] bounded. The process Z =
(Zt)t∈[0,1] is again called generator of the D-norm ‖·‖D.
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Example of a Generator: The Brown-Resnick Pro-
cess

A nice example of a generator process is the Brown-Resnick
process (Brown and Resnick (1977))

Zt := exp

(
Bt −

t

2

)
, t ∈ [0, 1],

where B := (Bt)t∈[0,1] is a standard Brownian motion on [0, 1].
That is, B ∈ C[0, 1], B0 = 0 and the increments Bt − Bs are
independent and normal N(0, t− s) distributed rv with mean
zero and variance t−s. As a consequence, each Bt with t > 0
is N(0, t)-distributed. We, therefore, have

Zt > 0, t ∈ [0, 1],

and, for t > 0,

E(Zt) = exp

(
− t

2

)
E(exp(Bt))
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= exp

(
− t

2

)
E

(
exp

(
t1/2

Bt

t1/2

))
= exp

(
− t

2

)∫ ∞
−∞

exp(t1/2x)
1

(2π)1/2
exp

(
−x

2

2

)
dx

=

∫ ∞
−∞

1

(2π)1/2
exp

(
−(x− t1/2)2

2

)
dx

= 1,

as exp
(
−(x− t1/2)2/2

)
/(2π)1/2 is the density of the normal

N(t1/2, 1)-distribution.

It is well known1 that for x ≥ 0

P

(
sup
t∈[0,1]

Bt > x

)
= 2P (B1 > x)

1http://ocw.mit.edu/courses/sloan-school-of-management/15-070j-advanced-stochastic-processes-fall-2013/lecture-notes/MIT15 070JF13 Lec7.pdf
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and, thus,

E

(
sup
t∈[0,1]

Zt

)
≤ E

(
sup
t∈[0,1]

exp (Bt)

)

= E

(
exp

(
sup
t∈[0,1]

Bt

))

=

∫ ∞
0

P

(
exp

(
sup
t∈[0,1]

Bt

)
> x

)
dx

≤ 1 +

∫ ∞
1

P

(
sup
t∈[0,1]

Bt > log(x)

)
dx

= 1 + 2

∫ ∞
1

P (B1 > log(x)) dx

= 1 + 2E(exp(B1))

<∞

as exp(B1) is standard lognormal distributed, with expecta-
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tion exp(1/2). The computation of the corresponding D-norm
is, however, not obvious.

Bounds for the Functional D-Norm

Lemma 3.1.1. Each functional D-norm is equivalent with the sup-
norm ‖·‖∞, precisely,

‖f‖∞ ≤ ‖f‖D ≤ ‖f‖∞ ‖1‖D , f ∈ E [0, 1] .

Proof. Let Z = (Zt)t∈[0,1] be a generator of ‖·‖D. We have for each
t0 ∈ [0, 1] and f ∈ E [0, 1]

|f (t0)| = E (|f (t0)|Zt0)

≤ E

(
sup
t∈[0,1]

(|f (t)|Zt)

)
= ‖f‖D
≤ E (‖f‖∞ ‖Z‖∞)
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= ‖f‖∞ ‖1‖D ,

which proves the lemma.

The Functional Lp-Norm is not a D-Norm

Different to the multivariate case, the functional logistic
norm is not a functional D-norm.

Corollary 3.1.1. Each p-norm ‖f‖p :=
(∫ 1

0 |f (t)|p dt
)1/p

with

p ∈ [1,∞) is not a D-norm.

Proof. Choose ε ∈ (0, 1) and put fε(·) := 1[0,ε](·) ∈ E [0, 1]. Then

‖fε‖∞ = 1 > ε1/p = ‖fε‖p. The p-norm, therefore, does not satisfy
the first inequality in the preceding result.
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A Functional Version of Takahashi’s Theorem

The next consequence of Lemma 3.1.1 is obvious. This is
a functional version of Takahashi’s Theorem 1.3.1 for ‖·‖∞.
Note that there cannot exist an extension to the functional
case with ‖·‖1, as this is not a functional D-norm by the
preceding result.

Corollary 3.1.2. A functional D-norm ‖·‖D is the sup-norm ‖·‖∞
iff ‖1‖D = 1.

3.2 Generalized Pareto Processes

Defining a Simple Generalized Pareto Process

Let Z = (Zt)t∈[0,1] be the generator of a functional D-norm
‖·‖D with the additional property

Zt ≤ c, t ∈ [0, 1] , (3.1)
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for some constant c ≥ 1. For each functional D-norm there
exists a generator with this additional property, see de Haan
and Ferreira (2006, equation (9.4.9)). This might be viewed
as a funcitonal analogue of the Normed Generators Theorem
1.7.2. Let U be a rv that is uniformly distributed on (0, 1)
and which is independent of Z. Put

V := (Vt)t∈[0,1] :=
1

U
(Zt)t∈[0,1] =:

1

U
Z. (3.2)

Repeating the arguments in equation (2.3) we obtain for g ∈
E [0, 1] with g(t) ≥ c, t ∈ [0, 1],

P (V ≤ g) (3.3)

= P

(
1

U
Z ≤ g

)
= P

(
U ≥ Zt

g(t)
, t ∈ [0, 1]

)
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=

∫
[0,c][0,1]

P

(
U ≥ zt

g(t)
, t ∈ [0, 1]

)
(P ∗Z)

(
d(zt)t∈[0,1]

)
=

∫
[0,c][0,1]

P

(
U ≥ sup

t∈[0,1]

zt
g(t)

)
(P ∗Z)

(
d(zt)t∈[0,1]

)
=

∫
[0,c][0,1]

1− P

(
U ≤ sup

t∈[0,1]

zt
g(t)

)
(P ∗Z)

(
d(zt)t∈[0,1]

)
= 1−

∫
[0,c][0,1]

sup
t∈[0,1]

zt
g(t)

(P ∗Z)
(
d(zt)t∈[0,1]

)
= 1− E

(
sup
t∈[0,1]

Zt
g(t)

)
= 1−

∥∥∥∥1

g

∥∥∥∥
D

,
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i.e., the functional df of the process V is in its upper tail
given by 1− ‖1/g‖D. We have, moreover,

P (Vt ≤ x) = 1− 1

x
, x ≥ c, t ∈ [0, 1],

i.e. each marginal df of the process V is in its upper tail equal
to the standard Pareto distribution. We, therefore, call the
process V simple generalized Pareto process; see Ferreira
and de Haan (2014) and Dombry and Ribatet (2015).

Survival Function of a Simple Generalized Pareto
Process

The following result extends the survival function of a multi-
variate GPD as in equation (2.4) to simple generalized Pareto
processes.
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Proposition 3.2.1. Let Z = (Zt)t∈[0,1] be the generator of a
functional D-norm ‖·‖D with the additional property ‖Z‖∞ ≤ c
for some constant c ≥ 1. Then we obtain for g ∈ E [0, 1] with
g(t) ≥ c, t ∈ [0, 1],

P (V ≥ g) = P (V > g) = E

(
inf
t∈[0,1]

(
Zt
g(t)

))
.

Proof. Repeating the arguments in equation (3.3), we obtain

P (V > g)

=

∫
[0,c][0,1]

P

(
U <

zt
g(t)

, t ∈ [0, 1]

)
(P ∗Z)

(
d(zt)t∈[0,1]

)
=

∫
[0,c][0,1]

P

(
U ≤ inf

t∈[0,1]

zt
g(t)

)
(P ∗Z)

(
d(zt)t∈[0,1]

)
=

∫
[0,c][0,1]

inf
t∈[0,1]

zt
g(t)

(P ∗Z)
(
d(zt)t∈[0,1]

)
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= E

(
inf
t∈[0,1]

Zt
g(t)

)
.

Excursion stability of a Generalized Pareto Process

Corollary 3.2.1. We obtain under the conditions of Lemma 3.2.1
and the additional condition E

(
inft∈[0,1]Zt

)
> 0

P (V ≥ xg |V ≥ g) =
1

x
, x ≥ 1.

Proof. We have

P (V ≥ xg |V ≥ g)

=
P (V ≥ xg,V ≥ g)

P (V ≥ g)
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=
P (V ≥ xg)

P (V ≥ g)

=
E
(

inft∈[0,1]
Zt
xg(t)

)
E

(
inf
t∈[0,1]

Zt
g(t)

) =
1

x
.

The conditional excursion probability P (V ≥ xg|V ≥ g) =
1/x, x ≥ 1, does not depend on g. We, therefore, call the
process V excursion stable.

Sojourn Time of a Stochastic Process

The time, which the process V = (Vt)t∈[0,1] spends above the
function g ∈ E [0, 1] g ≥ c ≥ 1, is called its sojourn time above
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g, denoted by

ST (g) =

∫ 1

0

1(g(t),∞) (Vt) dt.

From Fubini’s theorem we obtain

E (ST (g)) = E

(∫ 1

0

1(g(t),∞) (Vt) dt

)
=

∫ 1

0

E
(
1(g(t),∞) (Vt)

)
dt

=

∫ 1

0

P (Vt > g(t)) dt

=

∫ 1

0

1

g(t)
dt.

Recall that P (Vt ≤ x) = 1− 1/x, x ≥ c, t ∈ [0, 1].
By choosing the constant function g(t) := s ≥ c, we obtain

for the expected sojourn time of the process V above the
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constant s

E(ST (s)) = E

(∫ 1

0

1(s,∞)(Vt) dt

)
=

1

s
.

This implies

E(ST (s) | ST (s) > 0) =
E(ST (s))

1− P (ST (s) = 0)

=
1/s

1− P (Vt ≤ s, t ∈ [0, 1])

=
1

‖1‖D
,

independent of s ≥ c.
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3.3 Max-Stable Processes

Introducing Max-Stable Processes

Let V (1),V (2), . . . be a sequence of independent copies of
V = Z/U , where the generator Z satisfies the additional
boundedness condition (3.1). We obtain for g ∈ E [0, 1], g > 0,

P

(
1

n
max
1≤i≤n

V (i) ≤ g

)
= P

(
V (i) ≤ ng, 1 ≤ i ≤ n

)
=

n∏
i=1

P
(
V (i) ≤ ng

)
= P (V ≤ ng)n

=

(
1−

∥∥∥∥ 1

ng

∥∥∥∥
D

)n
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−−−→
n→∞

exp

(
−
∥∥∥∥1

g

∥∥∥∥
D

)
,

where the mathematical operations max1≤i≤nV
(n)
i , etc. are

taken componentwise.
The question now occurs: Is there a stochastic process
ξ = (ξt)t∈[0,1] on [0, 1] with

P (ξ ≤ g) = exp

(
−
∥∥∥∥1

g

∥∥∥∥
D

)
, g ∈ E [0, 1] , g > 0?

If ξ actually exists: Does it have continuous sample paths?
If such ξ exists, it is a max-stable process: Let ξ(1), ξ(2), . . .

be a sequence of independent copies of the process ξ. Then
we obtain for g ∈ E[0, 1], g > 0, and n ∈ N

P

(
1

n
max
1≤i≤n

ξ(i) ≤ g

)
= P

(
max
1≤i≤n

ξ(i) ≤ ng

)
= P

(
ξ(i) ≤ ng, 1 ≤ i ≤ n

)
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=

n∏
i=1

P
(
ξ(i) ≤ ng

)
= P (ξ ≤ ng)n

= exp

(
−
∥∥∥∥ 1

ng

∥∥∥∥
D

)n
= exp

(
−n
∥∥∥∥ 1

ng

∥∥∥∥
D

)n
= P (ξ ≤ g).

For the existence of such processes see Theorem 4.7.1.
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Chapter 4

Tutorial: D-Norms & Multivariate Extremes

4.1 Univariate Extreme Value Theory

Let X be R-valued random variable (rv) and suppose that
we are only interested in large values of X, where we call
a realization of X large, if it exceeds a given high threshold
t ∈ R. In this case we choose the data window A = (t,∞)
or, better adapted to our purposes, we put t ∈ R on a linear
scale and define

An = (ant + bn,∞)
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for some norming constants an > 0, bn ∈ R. We are, there-
fore, only interested in values of X ∈ An.

Denote by F the distribution function (df) of X. We obtain
for s ≥ 0

P{X ≤ an(t + s) + bn | X > ant + bn}

= 1− 1− F (an(t + s) + bn)

1− F (ant + bn)
,

thus facing the problem:

What is the limiting behavior of

1− F (an(t + s) + bn)

1− F (ant + bn)
−→n→∞ ? (4.1)

122



Extreme Value Distributions

Let X1, X2, . . . be independent copies of X. Suppose that
there exist constants an > 0, bn ∈ R such that for x ∈ R

P

(
max1≤i≤nXi − bn

an
≤ x

)
= F n(anx + bn) →n→∞ G(x)

for some (non degenerate) limiting df G. Then we say that
F belongs to the domain of attraction of G, denoted by
F ∈ D(G). In this case we deduce from the Taylor expansion
log(1 + ε) = ε + O(ε2) for ε→ 0 the equivalence

F n(anx + bn) −→n→∞ G(x)

⇔ n log(1− (1− F (anx + bn))) −→n→∞ log(G(x))

⇔ n(1− F (anx + bn)) −→n→∞ − log(G(x))

if 0 < G(x) ≤ 1, and hence,

1− F (an(t + s) + bn)

1− F (ant + bn)
−→n→∞

log(G(t + s))

log(G(t))
(4.2)
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if 0 < G(t) < 1.

By the meanwhile classical article by Gnedenko (1943) (see
also de Haan (1975) and Galambos (1987)) we know that
F ∈ D(G) only if G ∈ {Gα : α ∈ R}, with

Gα(x) =

{
exp
(
− (−x)α

)
, x ≤ 0,

1, x > 0,
for α > 0,

Gα(x) =

{
0, x ≤ 0,

exp(−xα), x > 0,
for α < 0

and

G0(x) := exp(−e−x), x ∈ R,

being the family of (reverse) Weibull, Fréchet and the Gum-
bel distribution. Note that G−1(x) = exp(x), x ≤ 0, is the
standard inverse exponential df.
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Max-Stability of Extreme Value Distributions

The characteristic property of the class of the extreme value
distributions (EVD) {Gα : α ∈ R} is their max-stability, i.e.,
for each α ∈ R and each n ∈ N there exist constants an > 0,
bn ∈ R, depending on α, such that

Gn(anx + bn) = G(x), x ∈ R. (4.3)

For G(x) = exp(x), x ≤ 0, for example, we have an = 1/n,
bn = 0, n ∈ N:

Gn
(x
n

)
= exp

(x
n

)n
= exp(x) = G(x).

Let η(1), η(2), . . . be independent copies of a rv η that follows
the df Gα. In terms of rv, equation (4.3) means

P

(
max1≤i≤n η

(i) − bn
an

≤ x

)
= P (η ≤ x), x ∈ R.

This is the reason, why Gα is called a max-stable df, and the
set {Gα : α ∈ R} collects all univariate max-stable distribu-
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tions which are non degenerate, i.e., they are not concen-
trated in one point in R see, e.g., Galambos (1987, Theorem
2.4.1).

Generalized Pareto Distributions

If we assume that F ∈ D(Gα), we obtain from (4.2) that

P

(
X − bn
an

≤ t + s | X − bn
an

> t

)
= 1− n(1− F (an(t + s) + bn))

n(1− F (ant + bn))

−→n→∞ 1− log(Gα(t + s))

log(Gα(t))

=

{
Hα

(
1 + s

t

)
, if α 6= 0,

H0(s), if α = 0.
s ≥ 0,
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provided 0 < Gα(t) < 1. The family

Hα(s) := 1 + log(Gα(s)), 0 < Gα(s) < 1,

=


1− (−s)α, −1 ≤ s ≤ 0, if α > 0,

1− sα, s ≥ 1, if α < 0,

1− exp(−s), s ≥ 0, if α = 0,

of df parameterized by α ∈ R is the class of (univariate)
generalized Pareto df (GPD) coming along with the family of
EVD. Notice that Hα with α < 0 is a Pareto distribution, H1

is the uniform distribution on (−1, 0), and H0 is the standard
exponential distribution.

The preceding considerations are the reason, why random
exceedances above a high threshold are typically modelled
as iid observations coming from a (univariate) GPD.

It was, for example, first observed by van Dantzig (1960)1

that floods, which exceed some high threshold, follow ap-
1http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.189.3302&rep=rep1&type=pdf
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proximately an exponential df.
Consequence: Suppose that your data are realizations from

iid observations, whose common df is in the domain of attrac-
tion of an extreme value df. Almost every textbook df satis-
fies this condition. Then the approximation of exceedances
above high thresholds by a GPD is, consequently, a straight-
forward option and typically used in risk assessment.

4.2 Multivariate Extreme Value Distributions

In complete accordance with the univariate case we call a df
G on Rd max-stable, if for every n ∈ N there exists vectors
an > 0, bn ∈ Rd such that

Gn (anx + bn) = G(x), x ∈ Rd. (4.4)

All operations on vectors such as addition, multiplication etc.
are always meant componentwise. The preceding equation
can again be formulated in terms of componentwise maxima

128



of independent copies η(1),η(2), . . . of a rv η = (η1, . . . , ηd)
that realizes in Rd, and which follows the df G:

P

(
max1≤i≤n η

(i) − bn
an

≤ x
)

= P (η ≤ x) , x ∈ Rd.

Note that also max is taken componentwise as well as divi-
sion.

Different to the univariate case, the class of multivariate
max-stable distributions or multivariate extreme value dis-
tributions (EVD) is no longer a parametric one, indexed by
some α. This is obviously necessary for the univariate mar-
gins of G. Instead, a nonparametric part occurs, which can
be best described in terms of D-norms.

What is a D-Norm?
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Definition 4.2.1. A norm ‖·‖D on Rd is a D-norm, if there exists
a rv Z = (Z1, . . . , Zd) with Zi ≥ 0, E(Zi) = 1, 1 ≤ i ≤ d, such
that

‖x‖D = E

(
max
1≤i≤d

(|xi|Zi)
)
,

x = (x1, . . . , xd) ∈ Rd.

In this case the rv Z is called generator of ‖·‖D.

Example 4.1. Here is a list of D-norms and their generators:

� ‖x‖∞ = max
1≤i≤d

|xi|, generated by Z = (1, . . . , 1).

� ‖x‖1 =

d∑
i=1

|xi|, generated byZ = random permutation of (d, 0, . . . , 0) ∈

Rd with equal probability 1/d.
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� ‖x‖λ =

(
d∑
i=1

|xi|λ
)1/λ

, 1 < λ < ∞. Let X1, . . . , Xd be inde-

pendent and identically Fréchet-distributed rv, i.e., P (Xi ≤ x) =
exp(−x−λ), x > 0, λ > 1. Then Z = (Z1, . . . , Zd) with

Zi :=
Xi

Γ(1− 1
λ)
, i = 1, . . . , d,

generates ‖·‖λ.

Characterization of a Standard Max-Stable Distri-
bution

A df G on Rd is a standard max-stable or standard extreme
value df iff it is max-stable in the sense of equation (4.4),
and if it has standard negative exponential margins:

G(0, . . . , 0, xi, 0, . . . , 0) = exp(xi), xi ≤ 0, 1 ≤ i ≤ d.
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The theory of D-norms now allows a mathematically ele-
gant characterization of a standard max-stable df.

Theorem 4.2.1 (Pickands (1981), de Haan and Resnick (1977),
Vatan (1985)).
A df G on Rd is a standard max-stable df ⇐⇒ there exists a
D-norm ‖·‖D on Rd such that

G(x) = exp (−‖x‖D) , x ≤ 0 ∈ Rd.

Characterization of an Arbitrary Max-Stable Dis-
tribution

Any multivariate max-stable df Gα1,...,αd with univariate mar-
gins Gα1, . . . , Gαd can be represented as

Gα1,...,αd(x) = G
(
ψα1(x1), . . . , ψαd(xd)

)
(4.5)

= exp
(
−
∥∥(ψα1(x1), . . . , ψαd(xd))∥∥D) , x ∈ Rd,
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where G(x) = exp (−‖x‖D), x ≤ 0 ∈ Rd, is a standard EVD
and

ψαi(x) = log (Gαi(x)) , 0 < Gαi(x), 1 ≤ i ≤ d,

see, e.g., Falk et al. (2011, equation (5.47)).

Pickands Dependence Function

Take an arbitrary D-norm on Rd. We, obviously, can write
for x 6= 0 ∈ Rd

‖x‖D = ‖x‖1

∥∥∥∥ x

‖x‖1

∥∥∥∥
D

=: ‖x‖1A
(
x

‖x‖1

)
,

where A(·) is a function on the unit sphere S =
{
y ∈ Rd : ‖y‖1 = 1

}
with respect to the norm ‖·‖1. It is evident that it suffices to

define the function A(·) on S+ :=
{
u ≥ 0 ∈ Rd−1 :

∑d−1
i=1 ui ≤ 1

}
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by putting

A(u) :=

∥∥∥∥∥
(
u1, . . . , ud−1, 1−

d−1∑
i=1

ui

)∥∥∥∥∥
D

.

The function A(·) is known as Pickands dependence function
and we can represent any SMS df G as

G(x) = exp (−‖x‖D)

= exp

((
d∑
i=1

xi

)
A

(
x1∑d
i=1 xi

, . . . ,
xd−1∑d
i=1 xi

))
and an arbitrary max-stable df correspondingly.

In particular in case d = 2 we obtain

A(u) = ‖(u, 1− u)‖D = E (max(uZ1, (1− u)Z2)) , 0 ≤ u ≤ 1,

with A(0) = A(1) = 1, max(u, 1 − u) ≤ A(u) ≤ u + (1 − u) = 1.
For a further analysis of the function A(·) we refer to Falk
et al. (2011, Chapter 6).
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For an appealing approach to the estimation of Pickands
dependence function A(·) in the general case d ≥ 2 using
Bernstein polynomials we refer to Marcon et al. (2014).

Characterization of Multivariate Domain of Attrac-
tion

In complete analogy to the univariate case we say that a
multivariate df F on Rd is in the domain of attraction of an
arbitrary multivariate EVD G, again denoted by F ∈ D(G),
if there are vectors an > 0, bn ∈ Rd, n ∈ N, such that

F n(anx + bn) −→n→∞ G(x), x ∈ Rd.

Recall: A copula on Rd is the df of a rv U = (U1, . . . , Ud) with
the property that each Ui follows the uniform distribution on
(0, 1). Sklar’s theorem plays a major role.
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Theorem 4.2.2 (Sklar (1959, 1996)). For every df F on Rd there
exists a copula C such that

F (x) = C(F1(x1), . . . , Fd(xd)), x = (x1, . . . , xd) ∈ Rd,

where F1, . . . , Fd are the univariate margins of F .

If F is continuous, then C is uniquely determined and given
by C(u) = F (F−11 (u1), . . . , F

−1
d (ud)), u = (u1, . . . , ud) ∈ (0, 1)d,

where F−1i (u) = inf {t ∈ R : Fi(t) ≥ u}, u ∈ (0, 1), is the gen-
eralized inverse of Fi.

Proposition 4.2.1 (Deheuvels (1984), Galambos (1987)). A d-
variate df F ∈ D(G) ⇐⇒ this is true for the univariate margins
of F together with the condition that the copula CF of F satisfies
the expansion

CF (u) = 1− ‖1− u‖D + o (‖1− u‖)
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as u→ 1, uniformly for u ∈ [0, 1]d, where ‖·‖D is the D-norm on
Rd that corresponds to G in the sense of equation (4.5).

Idea: Skip the o(‖1− u‖)-term.
Problem:

Is C(u) := 1− ‖1− u‖D , u ∈ [0, 1]d, a copula?

Answer:

Only in dimension d ∈ {1, 2}2.

Multivariate Generalized Pareto Distributions

A d-dimensional df W is called a multivariate GPD iff there
exists a d-dimensional EVD G and x0 ∈ Rd with G(x0) < 1
such that

W (x) = 1 + log(G(x)), x ≥ x0. (4.6)
2Michel (2008, Theorem 6)
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Note: 1 + log(G(x)), G(x) ≥ 1/e, does not define a df in
general unless d ∈ {1, 2}, see above.

For a standard max-stable df G(x) = exp (−‖x‖D), x ≤ 0 ∈
Rd, we obtain

W (x) = 1 + log(G(x)) = 1− ‖x‖D , x ∈ [x0, 0]d.

Note: Each univariate margin Wi(x) = 1 + x, x0 ≤ x ≤ 0, is
the df of a uniform distribution on [x0, 1].

Domain of Attraction for Copulas

Each univariate margin of an arbitrary copula is the uniform
distribution on (0, 1). Its df is FU(u) = u, u ∈ [0, 1]. We,
therefore, obtain with an = 1/n, bn = 1, n ∈ N,

F n
U (anx + bn) = F n

U

(x
n

+ 1
)

=
(

1 +
x

n

)n
if n is large

138



−→n→∞ exp(x), x ≤ 0,

i.e., each univariate margin of an arbitrary copula is automat-
ically in the domain of attraction of the EVD G(x) = exp(x),
x ≤ 0.

Replacing in the preceding Proposition 4.2.1 the df F by a
copula C immediately yields the following characterization.

Corollary 4.2.1. A copula C ∈ D(G) ⇐⇒
C(u) = 1− ‖1− u‖D + o(‖1− u‖)

as u→ 1, uniformly for u ∈ [0, 1]d.

Message: A copula C(u) can reasonably be approximated
for u close to 1 only by a shifted GPD W (u − 1) = 1 −
‖1− u‖D.

This message has the following implication for risk assess-
ment: If you want to model the copula underlying multi-
variate data above some high threshold u0, you should try a
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GPD copula, which is given in its upper tail by

Q(u) = 1− ‖1− u‖D , u0 ≤ u ≤ 1,

where ‖·‖D is a D-norm.

Multivariate Piecing-Together

It is possible to cut off the upper tail of an arbitrary copula
C and to substitute it by a GPD copula as above such that
the result is again a copula, see Aulbach et al. (2012a,b):
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(0, 1) (1, 1)

(0, 0) (1, 0)

C

Q

Multivariate Piecing Together
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4.3 Extreme Value Copulas et al.

Extreme Value Copulas

An extreme value copula on Rd is the copula of an arbitrary
d-variate max-stable df G∗. It has by equation (4.5) the rep-
resentation

CG∗(u) = exp (−‖(log(u1), . . . , log(ud))‖D) , u ∈ (0, 1]d,

and, thus, we have by elementary arguments the following
equivalences:

A copula CF is in the max-domain of attraction of a standard
max-stable df G

⇐⇒ CF (u) = 1− ‖1− u‖D + o (‖1− u‖), u ∈ [0, 1]d,

⇐⇒ limt↓0
1−CF (1+tx)

t = `G∗(x), x ≤ 0 ∈ Rd,

with `G∗(x) := − log(CG∗(exp(x))) = ‖x‖D, x ≤ 0, known as
the stable tail dependence function (Huang (1992)) of G∗.
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This opens the way to estimate an underlying D-norm by
using estimators of the stable tail dependence function3.

Example 4.3.1. Take an arbitrary Archimedean copula

Cϕ(u) = ϕ−1(ϕ(u1) + · · · + ϕ(um)),

(McNeil and Nešlehová (2009, Theorem 2.2). If ϕ is differentiable
from the left in x = 1 with left derivative ϕ′(1−) 6= 0, then

lim
t↓0

1− Cϕ(1 + tx)

t
=
∑
i≤m
|xi| = ‖x‖1 , x ≤ 0 ∈ Rm,

=⇒ Cϕ ∈ D(G) with G(x) = exp (−‖x‖1), x ≤ 0, having
independent margins =⇒ margins of Cϕ are tail independent.

This concerns Clayton, Frank copula, but not the Gumbel copula
with generator ϕG(t) = (− log(t))λ, 0 < t ≤ 1, λ > 1.

3http://www.actuaries.org/ASTIN/Colloquia/Hague/Presentations/Krajina.pdf
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4.4 A Measure of Tail Dependence

The Extremal Coefficient

To measure the dependence among the univariate margins
by just one number, Smith (1990) introduced the extremal
coefficient as that constant ε > 0 which satisfies

G∗(x, . . . , x) = F ε(x), x ∈ R,

where G∗ is an arbitrary d-dimensional max-stable df with
identical margins F .

If ε = d we have independence of the margins, if ε = 1 we
have complete dependence.

Question: Can we characterize this ε? Does it exist at all?

Without loss of generality we can transform as in equation
(4.5) the margins of G∗ to the standard negative exponential
distribution exp(x), x ≤ 0, thus obtaining a standard max-
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stable df G and, threfore,

G(x, . . . , x) = exp(−‖(x, . . . , x)‖D) = exp(x ‖1‖D) = exp(x)‖1‖D,

x ≤ 0, yielding

ε = ‖1‖D .

The extremal coefficient is, therefore, the D-norm of the
vector 1.

If a df F is in the domain of attraction of an arbitrary mul-
tivariate EVD G∗ with corresponding D-norm as in equation
(4.5), then ε = ‖1‖D is a measure of the tail dependence of
F . This is a crucial measure for assessing the risk inherent
in a portfolio etc.
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4.5 Takahashi’s Theorem

Takahashi’s Theorem for D-Norms

The following result can easily be established by elementary
arguments (see Theorem 1.3.1).

Theorem 4.5.1 (Takahashi (1988)). We have for an arbitrary D-
norm ‖·‖D on Rd:

(i) ‖·‖D = ‖·‖1 ⇐⇒ ∃y > 0 : ‖y‖D = ‖y‖1,
(ii) ‖·‖D = ‖·‖∞ ⇐⇒ ‖1‖D = 1.

Consequence: The margins of a multivariate EVD are in-
dependent iff this is true for at least one point. They are
completely dependent if they are dependent at one point.

The next result can easily be established as well (see The-
orem 1.3.3).
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Theorem 4.5.2. Let ‖·‖D be an arbitrary D-norm on Rd and
denote by ei := (0, . . . , 0, 1, 0, . . . , 0) the i-th unit vector in Rd.
We have

‖·‖D = ‖·‖1 ⇐⇒ ‖ei + ej‖D = 2, 1 ≤ i 6= j ≤ d.

Speaking in terms of multivariate EVD, the preceding result
states: The margins of an arbitrary multivariate EVD are
independent iff they are pairwise independent.

4.6 Some General Remarks on D-Norms

� The generator Z of a D-norm ‖·‖D is in general not uniquely
determined, even its distribution is not.

� We have the bounds

‖·‖∞ ≤ ‖·‖D ≤ ‖·‖1
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for an arbitrary D-norm; ‖·‖∞, ‖·‖1 are D-norms them-
selves.

� The index D means dependence:

G(x) = exp (−‖x‖∞) = complete dependence of the margins of G

G(x) = exp (−‖x‖1) = independence of the margins of G.

Copulas as Generators of a D-Norm

By the way, talking about dependence: Let the rv U =
(U1, . . . , Ud) follow an arbitrary copula on Rd, i.e., each Ui is
on (0, 1) uniformly distributed. Then

Z := 2U

is obviously the generator of a D-norm.
Not each D-norm can be generated this way: The bivariate

D-norm ‖·‖1 cannot.
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There are, consequently, strictly more D-norms than cop-
ulas.

4.7 Functional D-Norm

Denote by E[0, 1] the set of functions f : [0, 1] → R that are
bounded and have only a finite number of discontinuities.
This is obviously a linear space. By C[0, 1] we denote the
subset of continuous functions.

Generator of a Functional D-Norm

Let Z = (Zt)t∈[0,1] be a stochastic process with continuous
sample paths, i.e., Z ∈ C[0, 1], with the additional properties

Zt ≥ 0, E(Zt) = 1, t ∈ [0, 1],
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and

E

(
sup
t∈[0,1]

Zt

)
<∞.

Then

‖f‖D := E

(
sup
t∈[0,1]

(|f (t)|Zt)

)
, f ∈ E[0, 1],

defines a norm on E[0, 1], called D-norm, with generator Z.

Max-Stable Processes

Let η = (ηt)t∈[0,1] be a stochastic process in C[0, 1], with the
additional property that each component ηt follows the stan-
dard negative exponential distribution exp(x), x ≤ 0. The
following result, which goes back to Giné et al. (1990), can
now be formulated in terms of the functional D-norm:
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Theorem 4.7.1. A process η as above is max-stable ⇐⇒ there
exists a D-norm ‖·‖D on E[0, 1] such that

P (η ≤ f ) = exp (−‖f‖D) , f ∈ E−[0, 1].

We call a max-stable process η as above standard max-
stable (SMS). It, obviously, satisfies with 1 denoting the
constant function 1 on [0, 1]

P

(
sup
t∈[0,1]

ηt ≤ x

)
= P (ηt ≤ x, t ∈ [0, 1])

= P (η ≤ x1)

= exp (−‖x1‖D)

= exp (x ‖1‖D) , x ≤ 0,

i.e., the rv X := supt∈[0,1] ηt is negative exponential distributed

P (X ≤ x) = exp(x/ϑ), x ≤ 0,
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with parameter ϑ = 1/ ‖1‖D. As a consequence we obtain in
particular

P (ηt = 0 for some t ∈ [0, 1])

= P

(
sup
t∈[0,1]

ηt = 0

)
= 1− P (X < 0)

= 1− P (X ≤ 0)

= 0.

We can now put

ξ :=
1

η
.

The process ξ = (ξt)t∈[0,1] has continuous sample paths, each
margin ξt is standard Fréchet distributed

P (ξt ≤ y) = P

(
ηt ≤ −

1

y

)
= exp

(
−1

y

)
, y > 0,
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and we have for g ∈ E[0, 1], g > 0,

P (ξ ≤ g) = P

(
η ≤ −1

g

)
= exp

(
−
∥∥∥∥1

g

∥∥∥∥
D

)
.

The process ξ is, consequently, max-stable as well. It is
called simple max-stable in the literature.

4.8 Some Quite Recent Results on Multivariate Records

Multivariate Records

The subsequent results are joint work with Clément Dombry
and Maximilian Zott (Dombry et al. (2015)). Let X1,X2, . . .
be independent copies of a rv X ∈ Rd. We say that Xk is a
(multivariate simple) record, if

Xk 6≤ max
1≤i≤k−1

Xi,

i.e., if at least one component of Xk is strictly larger than
the corresponding components of X1, . . . ,Xk−1.
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×

×

×
×

× a new record
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Record Times

We denote by N(n), n ≥ 1, the record times, i.e., those sub-
sequent random indices at which a record occurs. Precisely,
N(1) = 1, as X1 is, clearly, a record, and, for n ≥ 2,

N(n) := min

{
j : j > N(n− 1), Xj 6≤ max

1≤i≤N(n−1)
Xi

}
.

As the df F is continuous, the distribution of N(n) does
not depend on F and, therefore, we assume in what follows
without loss of generality that F is a copula C on Rd, i.e.,
each component of Xi is on (0, 1) uniformly distributed.

Expectation of Record Time

We have for j ≥ 2

P (N(2) = j) =

∫
[0,1]d

C(u)j−2(1− C(u))C(du)
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and, thus,

E(N(2)) =

∫
[0,1]d

C(u)

1− C(u)
C(du) + 2.

Suppose now that d = 1. Then we have u = u ∈ [0, 1],
C(u) = u and

E(N(2)) =

∫ 1

0

u

1− u
du + 2 =∞,

which is well-known (Galambos (1987, Theorem 6.2.1)). Be-
cause N(n) ≥ N(2), n ≥ 2, we have E(N(n)) = ∞ for n ≥ 2
as well.

Suppose next that d ≥ 2 and that the margins of C are
independent, i.e.,

C(u) =

d∏
i=1

ui, u = (u1, . . . , ud) ∈ [0, 1]d.
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Then we obtain∫
[0,1]d

C(u)

1− C(u)
C(du) =

∫ 1

0

. . .

∫ 1

0

∏d
i=1 ui

1−
∏d

i=1 ui
du1 . . . dud <∞

by elementary arguments and, thus, E(N(2)) < ∞. This
observation gives rise to the problem to characterize those
copulas C on [0, 1]d with d ≥ 2, such that E(N(2)) is finite.
Note that E(N(2)) = ∞ if the components of C are com-
pletely dependent.

Characterization of Finite Expectation

Lemma 4.8.1. We have E(N(2)) <∞ iff∫ ∞
1

P

(
Xi ≥

1

t
, 1 ≤ i ≤ d

)
dt <∞. (4.7)
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Dual D-Norm Function

Let ‖·‖D be an arbitrary D-norm on Rd with arbitrary gener-
ator Z = (Z1, . . . , Zd). Put

oo x ooD := E

(
min

1≤i≤∈T
(|xi|Zi)

)
, x ∈ Rd,

which we call the dual D-norm function corresponding to
‖·‖D. It is independent of the particular generator Z, but
the mapping

‖·‖D → oo · ooD
is not one-to-one. In particular we have that

oo · ooD = 0

is the least dual D-norm function, corresponding to ‖·‖D =
‖·‖1, and

oo x ooD = min
1≤i≤d

|xi| = oo x oo∞, x ∈ Rd,
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is the largest dual D-norm function, corresponding to ‖·‖D =
‖·‖∞, i.e., we have for an arbitrary dual D-norm function the
bounds

0 = oo · oo1 ≤ oo · ooD ≤ oo · oo∞.
While the first inequality is obvious, the second one follows
from

|xk| = E(|xk|Zk) ≥ E

(
min
1≤i≤d

(|xi|Zi)
)
, 1 ≤ k ≤ d.

Expansion of Survival Function of C ∈ D(G) via Dual
D-Norm Function

We obtain the following consequence.

Lemma 4.8.2. Let G be a sms df with corresponding D-norm
‖·‖D. Then we have for an arbitrary copula C the implication

C ∈ D(G) =⇒ P (X ≥ u) = oo 1− u ooD + o(‖1− u‖) (4.8)
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as u → 1, uniformly for u ∈ [0, 1]d, where X is a rv whose df is
C.

Note that the reverse implication in the preceding result
does not hold, as the mapping ‖·‖D → oo · ooD is not one to
one.

Infinite Expectation of Record Time

Proposition 4.8.1. Suppose that C ∈ D(G), where the D-norm
corresponding to G satisfies oo 1 ooD > 0. Then E(N(2)) =∞.

Another Tail Dependence Coefficient

Within the class of (bivariate) copula that are tail indepen-
dent,

χ̄ := lim
u↑1

2 log(1− u)

log(P (X1 > u,X2 > u))
− 1
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is a popular measure of tail comparison, provided this limit
exists (Coles et al. (1999); Heffernan (2000)). In this case
we have χ̄ ∈ [−1, 1], cf. Beirlant et al. (2004, (9.83)). For
a bivariate normal copula with coefficient of correlation ρ ∈
(−1, 1) it is, for instance, well known that χ̄ = ρ.

Proposition 4.8.2. Let X = (X1, . . . , Xd) follow a copula C in
Rd with C ∈ D(G) and G having independent margins. Suppose
that there exist indices k 6= j such that

χ̄k,j = lim
u↑1

2 log(1− u)

log(P (Xk > u,Xi > u))
− 1 ∈ (−1, 1).

Then we have E(N(2)) <∞.

Corollary 4.8.1. We have E(N(2)) <∞ for multivariate normal
rv unless all components are completely dependent.
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L1-norm, 2
∆-inequality, 2

Angular measure, 52

Brown-Resnick Process, 103

Cauchy-Schwarz inequality, 6
Copula, 38, 135

extreme value, 142
GPD, 140

D-norm, 7
Dirichlet D-norm, 60
Distance, 2

Distribution

Dirichlet, 59

exponential, 127

extreme value, 125, 129

Fréchet, 14, 82, 89

Gamma, 59

generalized Pareto (GPD),
127

generalized Pareto distri-
bution, 72

generalized Pareto, multi-
variate, 137
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inverse exponential, 124
max-stable, 125, 128
Pareto, 70, 111, 127
simple max-stable, 82
standard GPD, 88
standard max-stable, 84
standard negative exponen-

tial, 84
uniform, 127

Domain of attraction , 123

Excursion stability, 114
Exponent measure theorem,

44
Extremal coefficient, 144

Functional D-norm, 150
Functional distribution func-

tion, 111

Gamma function, 14
Generalized Pareto process,

111
Generator, 7, 102

Homogeneity, 2

Inclusion exclusion principle,
45

Marshall-Olkin D-norm, 34
max-characteristic function,

32
Max-stability, 80, 125
Max-stable process, 118
Metric, 2

Wasserstein, 62
Minkowski-inequality, 3

Norm, 1
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logistic, 14
monotone, 10
radial symmetric, 10

Piecing together, 141
Polar coordinates, 52

Record, 153
Record time, 156

Simple max-stable process, 153
Sklar’s theorem, 135
Sojourn time, 114
Standard max-stable process,

151
Sup-norm, 2

Tail dependence, 145
Threshold, 121
Triangle inequality, 2
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Falk, M., Hüsler, J., and Reiss, R.-D. (2011). Laws of Small
169

http://arxiv.org/abs/1510.04529
http://arxiv.org/abs/1510.04529
http://dx.doi.org/10.4310/SII.2015.v8.n1.a2


Numbers: Extremes and Rare Events. 3rd ed. Springer,
Basel. doi:10.1007/978-3-0348-0009-9.

Ferreira, A., and de Haan, L. (2014). The generalized Pareto
process; with a view towards application and simulation.
Bernoulli 20, 1717–1737. doi:10.3150/13-BEJ538.

Galambos, J. (1987). The Asymptotic Theory of Extreme
Order Statistics. 2nd ed. Krieger, Malabar.
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leurs marges. Pub. Inst. Stat. Univ. Paris 8, 229–231.

Sklar, A. (1996). Random variables, distribution func-
tions, and copulas – a personal look backward and for-
ward. In Distributions with fixed marginals and related
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